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1. Introduction  

Orienteering Problem (OP) is an NP-hard vehicle routing problem that combines two 

classical combinatorial optimization problems, the Traveling Salesman Problem (TSP) and 

the Knapsack Problem (Vansteenwegen et al., 2011).  The objective of the problem is to 

select the most profitable combination of customers from a list of potential customers given 

that the selected customers do not violate the time constraints (Gunawan et al. 2016). OP 

was first introduced by Golden et al. (1987) and since then, the problem has received a 

considerable amount of attention by researchers in the past few decades. The survey papers 

published by Vansteenwegen et al. (2011) and Gunawan et al. (2016) provided an extensive 

summary of the range of research works done on OP and its variant from the time of 

introduction of the OP to as recent as 2016.  

Team Orienteering Problem (TOP) is one main variant of the original OP. The objective of 

TOP is to select the most profitable combination of customers for a fleet of vehicles from 

a list of potential customers, given that the selected customers do not violate the time 

constraints. The concept of TOP was first introduced by Butt and Cavalier (1994), who 

named it the Multiple Tour Maximum Collection Problem, and Chao et al. (1996) came up 

with the term TOP, which is widely used by researchers around the world currently.  

In this paper, we focus on another variant of the OP, namely the Capacitated Team 

Orienteering Problem. CTOP considers each vehicle to have a limited capacity and each 

customer is associated with a demand for capacity. The objective of the CTOP is to 

optimize the profit generated for the fleet of vehicles by choosing customers with the 

consideration of each customer’s demand and profit. The concept was first introduced by 

Archetti et al. (2009) and it has great practical usage in the logistics industry. Many of the 

logistics companies are now facing international competition, which forces them to cut 

costs in order to survive in this competitive market. One of the ways to cut cost is to 

maximise the number of goods each vehicle can hold. However, the survey papers 

conducted by Vansteenwegen et al. (2011) and Gunawan et al. (2016) showed that only 

few research works have been done on this particular topic. Therefore, this paper aims to 

contribute to the research on CTOP by providing a heuristic approach that can generate a 

good quality solution efficiently.  

Archetti et al. (2009) proposed an exact approach and three heuristic approaches to solve 

this problem. The exact approach is based on the branch-and-price algorithm. The three 

heuristic approaches comprise of Variable Neighbourhood Search (VNS) algorithm and 

Tabu search algorithms. A novel Bi-level Filter-and-Fan method is proposed by Tarantilis 
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(2013). The proposed method consists of three components: a greedy parallel insertion-

based construction heuristic to generate an initial feasible solution; a new Tabu Search 

based local search to identify a local optimal solution, and a novel filter-and-fan search to 

explore larger combined neighbourhoods and generate multiple search trajectories in an 

effort to overcome local optimality. The algorithm was able to match and improve some of 

the best reported results with competitive computational time. Luo et al. (2013) introduced 

an approach using an adaptive Ejection Pool (EP) with toggle-rule diversification. The 

proposed algorithm maintains the current solution in two parts: the first part consists of the 

selected customers and the second part consists of all the potential customers that are 

currently not selected. The potential customers are arranged based on their value, with the 

first one being the most valuable customer. Priority is given to the first potential customer 

if a replacement is to be made between the selected customer and potential customers. 

Another heuristic algorithm proposed is the Adaptive Iterative Destruction/Construction 

Heuristic (AIDCH) (Ben-Said et al., 2016). This algorithm starts with an adaptive 

construction phase based on the Best Insertion Algorithm, followed by an adaptive 

diversification phase with local search methodologies. A recent research work on CTOP 

was published by Gunawan et al. (2019), which proposed a heuristic algorithm based on 

the Iterated Local Search (ILS). This algorithm comprises of 4 main modules: initial 

solution, local search, perturbation and acceptance. The algorithm produced promising 

results as compared to other heuristic algorithms proposed previously.  

2. Proposed Algorithm 

We propose a heuristic which is inspired by the Simulated Annealing and Iterated Local 

Search (SAILS) algorithm (Gunawan et al., 2017). The entire algorithm is illustrated in 

Figure 1. The Simulated Annealing (SA) portion of the proposed algorithm is further 

modified by adapting the SA process proposed by Lin and Yu (2015) with a few minor 

adjustments. The first adjustment is done after generating the initial solution, with the 

addition of local search first before entering the looping process. The addition of an extra 

local search right after initial solution improves the efficiency of the algorithm by starting 

off the looping process with a much better initial condition (Gunawan et al., 2019). The 

second adjustment is done at the generation of the solution based on a previous solution 

through exploring the neighbourhood. The original SA process introduced by Lin and Yu 

(2015) has 3 types of iterators for exploring the neighbourhood, namely Swap, Insert 

and Reverse, each with a probability of 1/3 being chosen. Since Insertion will be 

performed exhaustively in the local search step, Insert is removed from this step for the 

proposed algorithm. More details of the operators will be explained below. 

The Random Walk acceptance criterion (Vansteenwegen, 2014) is adapted for the proposed 

algorithm. This acceptance criterion provides a good balance between intensification and 

diversification when searching for solutions. Local search operators adapted from ILS 

(Gunawan et al., 2017) ensure that only solutions that are better than the current solution 

are kept, leading to search intensification. Random neighbourhood search with SA process 

allows the algorithm to explore neighbouring solution and have chance to escape local 

optima, leading to search diversification. 

The algorithm starts off by first generating the initial solution 𝑋. The current temperature 

𝑇 is also set to the initial temperature 𝑇𝑚𝑎𝑥.  The algorithm then performs a round of local 

search on 𝑋 to improve the initial solution, and the best-found solution F(𝑍) is updated to 

𝐹(𝑋). Upon completion of the neighbourhood search, a new solution, 𝑌, is found and the 

objective value of 𝑌, 𝐹(𝑌), is compared against the objective value of 𝑋, 𝐹(𝑋). If 𝐹(𝑌) is 

better or equal to 𝐹(𝑋), then 𝑋 is replaced by 𝑌. However, if 𝐹(𝑌) is worse than 𝐹(𝑋), 

another random number 𝑟 between 0 and 1 is generated and compared against 𝑒
𝐹(𝑌)−𝐹(𝑋)

𝑇  , 

where 𝑋 is replaced by 𝑌 if 𝑟 < 𝑒
𝐹(𝑌)−𝐹(𝑋)

𝑇 . Furthermore, if 𝐹(𝑌) is better than 𝐹(𝑍), 𝑍 is 

also replaced by 𝑌. The neighbourhood search repeats itself until 𝐼 = 𝐼𝑚𝑎𝑥. 
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Next, the temperature 𝑇 is reduced with the formula 𝑇 = 𝑇 × 𝛼, where 𝛼 is the cooling 

ratio. Local search is performed on 𝑍 to further improve the solution. Now, the algorithm 

performs a check to see if 𝐹(𝑍) is improved after the local search. If 𝐹(𝑍) is improved, 

then 𝑁 = 0, 𝐼 = 0, and the algorithm begins another round of neighbourhood search with 

𝑋 = 𝑍. If 𝐹(𝑍) is not improved, the non-improved count, 𝑁, increases by one and is 

compared against 𝑁𝑚𝑎𝑥. If 𝑁 < 𝑁𝑚𝑎𝑥, 𝐼 = 0 and the algorithm begins another round of 

neighbourhood search with 𝑋 = 𝑍. The algorithm terminates when 𝑁 = 𝑁𝑚𝑎𝑥. 

 

1: Generate Initial Solution  

2: F(Z) Apply Local Search  

3: Set I = 0, N = 0, T = Tmax, F(Z) = F(X*) 

4: while (N < Nmax) do 

5:     while (I < Imax) do 

6:         F(Y)  Neighborhood Search  

7:         I++ 

8:         if (F(Y) > F(X*)) 

9:             F(X*)  F(Y) 

10:       else 

11:           Generate r ~ U(0,1) 

12:           if (r < exp((F(Y) – F(X*)) / T)) 

13:               F(X*) = F(Y) 

14:           else 

15:               return to step 5 

16:           if (F(X*) > F(Z)) 

17:               F(Z) = F(X*) 

18:           else 

19:               Return to step 5 

20:     T = T × α 

21:     F(Z*)  Local Search  

22:     if (F(Z*) > F(Z)) 

23:         N = 0 

24:     else 

25:         N = N + 1 

26:     I = 0; return to step 4 

Figure 1. Proposed Algorithm 

In order to generate the initial solution, we implement the simple insertion heuristic (Luo 

et al., 2013). This method first ranks all the customers based on their potential value. The 

ranked customers are then inserted one by one into the available vehicles starting from the 

highest value customers. The process stops when no more customers can be added into any 

of the vehicles. Since service time is not included into the calculation of the cost for the 

given benchmark instances, the value calculation for the given instance would be:  

𝑣𝑎𝑙𝑢𝑒 =
𝑝𝑟𝑜𝑓𝑖𝑡

𝑑𝑒𝑚𝑎𝑛𝑑
      (1) 

Six different local search operators, as shown in Table 1, were adapted from Gunawan et 

al. (2017). All the six operators are executed in sequence given in Table 1 for every call of 

the neighbourhood search. Swap1 selects the vehicle with the least remaining travel time. 

All possible combinations of exchanging positions between two different customers are 

performed. Swap1 is considered successfully executed only if the exchange increases the 

travel time of the chosen vehicle. Swap2 is similar to Swap1, with the exception of 

selecting two vehicles with the least remaining travel times. All possible combinations of 

exchanging positions of customers between two vehicles are performed. Swap2 is 

considered successfully executed only if the exchange increases the total travel time from 

both vehicles. Both operations terminate when all possible combinations of exchange are 

performed. 

2-Opt is executed by first selecting the vehicle with the least remaining travel time. All 

possible combinations of selecting two different customers are performed, and the 
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sequences of customers between the two selected customers are reversed. Move reallocates 

customers from one vehicle to another, with the objective of reducing total remaining time 

for all vehicles. The reallocation of customers should not violate any constraints and the 

operation terminates when all customers tried reallocating to all locations in all vehicles.  

All the above-mentioned operators do not change the objective function value. They 

modify the current solution in order to increase the total remaining travel time. This may 

provide more opportunities for the next two operators, namely Insert and Replace, to 

improve the objective function value by adding or replacing customers from the group of 

unassigned customers. Insert rearranges all customers that are not assigned to the 

vehicles, based on their values in ascending order. Each unassigned customer would now 

be inserted into the vehicles without violating any constraints. If there are multiple insertion 

locations available for this unassigned customer, the location with the least addition of total 

traveling time will be chosen. Replace replaces customers assigned to vehicles with 

customers that have not been selected. The vehicle with the most remaining travel time is 

chosen for this operation. All unassigned customers are rearranged based on their values. 

The highest-valued unassigned customer is then selected to replace any customer in the 

vehicle that has a value lower than that of the unassigned customer without violating any 

constraints. If there are multiple potential customers in the vehicle that can be replaced by 

the unassigned customer, replace the customer that will result in the least addition of travel 

time. Each time after a successful replacement, rearrangement of the unassigned customers 

will be done and the highest-valued unassigned customer is chosen for the next 

replacement.  

Table 1. Local Search operators 

Operator Definition 

Swap1 Exchange two customers within one vehicle 

Swap2 Exchange two customers between two vehicles 

2-Opt Reverse the sequence of certain customers within a vehicle 

Move Move one customer from one vehicle to another vehicle 

Insert Insert or add customers to a vehicle 

Replace Replace one customer in a vehicle with another customer that has not been selected 

 

3. Computational Results 

The proposed algorithm was implemented in C++ programming language and the 

computational runs were performed on a CPU with MacOS, Intel Core i5 2.7 GHz Dual-

Core processor and 8 GB of RAM. Benchmark instances from Tarantilis (2012) were used 

to test the proposed algorithm. 

The comparison of the results from the proposed solution against other well-known 

algorithms are presented below. The results of the-state-of-the-art algorithms were used to 

compare with the results generated from the proposed algorithm. Here, Variable 

Neighbourhood Search (VNS) and Tabu Search (feasible) (TSf) correspond to the 

algorithms proposed by Archetti et al. (2009); Bi-level Filter-and-Fan Fast (BiF&F-f) 

corresponds to the algorithm proposed by Tarantilis et al. (2012); Iterated Local Search 

(ILS) corresponds to the algorithm proposed by Gunawan et al. (2019). It is observed that 

keeping 𝐼𝑚𝑎𝑥 at 3000, 𝑁𝑚𝑎𝑥 at 10, 𝑇𝑚𝑎𝑥 at 1 and 𝛼 at 0.99 provides the opportunity to 

find most of the best-known solutions (BK) at relatively short run time. Due to space 

constraints, only a summary of the result comparisons is presented in this section. Note that 

“p” refers to the average objective function value and “t(s)” refers to the computation time 

(in seconds). %d refers to the percentage difference between “p” for proposed algorithm 

and “p” for best known solution (BK). 
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Table 2. Computational Results 

Instance 
BK VNS TSf BiF&F-f ILS SA_ILS 

p p t(s) %d p t(s) %d p t(s) %d p t(s) %d p t(s) %d 

Set 1 1814.2 1814.2 0.0 0.00 1814.0 43.3 0.02 1824.0 0.2 -0.34 1814.0 19.0 0.01 1824.0 21.4 -0.32 

Set 2 295.2 294.9 667.1 0.07 295.0 505.9 0.06 295.1 7.9 0.03 292.5 30.0 0.88 293.1 24.1 0.56 

Set 3 728.4 728.4 1028.5 0.00 726.2 388.0 0.29 728.5 6.0 -0.02 727.9 128.4 0.08 725.5 55.6 0.39 

Average 945.9 945.8 565.2 0.03 945.0 312.4 0.12 949.0 4.7 -0.11 944.8 59.2 0.32 947.0 33.7 0.21 

 

As seen from the table above, the proposed algorithm is comparable against the other 

algorithms in terms of quality and computation time. Furthermore, it is also able to improve 

one best-known solution from Set 1 of the benchmark instances. The proposed algorithm’s 

computation time is also shorter as compared to the algorithms VNS, TSf and ILS. 

However, it is worth mentioning that BiF&F-f algorithm is far more superior than all other 

algorithms in both the results and computation time.  

4. Conclusion 

In this paper, Simulated Annealing with Iterated Local Search (ILS) metaheuristic 

algorithm is proposed to solve the Capacitated Team Orienteering Problem (CTOP). It 

combines Simulated Annealing process with ILS operators to enhance the algorithm’s 

diversification and intensification. The algorithm is then used to solve benchmark instances 

and the results are compared against other state-of-the-art algorithms. The proposed 

algorithm displayed good performance that is comparable with other state-of-the-art 

algorithms in both the results and computation time. Furthermore, the relatively simple 

algorithm structure, along with few user-defined parameters, indicates the applicability of 

the proposed approach towards solving other variants of the Orienteering Problems, as well 

as the real-life Orienteering Problems. The results are still preliminary with some future 

research directions, such as developing more local search operators and a more rigorous 

tuning procedure using statistical tests. 
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1 Introduction

The Tourist Trip Design Problem (TTDP) [2] is about planning the trip
itinerary for a tourist, when he/she visits a particular place (e.g. a city) for
a certain period of time (e.g. couple of days). It is assumed that the place
comprises of a number of Points of Interest (POIs), and the satisfaction fac-
tor of the tourist for each of the POIs is a known figure, whereas, each POI
is characterized with its own attributes (e.g. opening hours, visit duration,
cost of visit, specific types/categories, etc.). In addition, the tourist can en-
force constraints, such as amount of money to spent on the trip and maximum
number of POIs of certain type/category to visit. In this abstract, we present
an extended variant of the TTDP problem, where we allow the tourist to ex-
press patterns of the visits to the POIs, in terms of having a certain number
of types of POIs visited in a predefined sequence. For example, if the tourist
has selected the pattern monument-castle-museum, for his/her first day of the
tour, then the plan should have at least one monument, one castle and one
museum included into the itinerary. Moreover, the specified POIs should be
planned in the given sequence, although other ones, of any given type, can
be inserted in-between. Our approach for tackling this newly defined variant
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of TTDP problem is based on the simulated annealing meta-heuristic and it
utilizes the concept of POI pivoting for construction of good starting solutions.

2 Modeling the Tourist Trip Design Problem

In the literature, the TTDP problem is mostly modeled based on the Orien-
teering Problem (OP) [5] and its derived variants. In the OP, during a single
and limited period of time, among a given number of points, a subset of them
has to be visited, with the objective of selecting points whose total satisfac-
tion factor is maximized. The Team OP (TOP)[1] enables multiple periods
(e.g. days), whereas OP with Time Windows (OPTW) allows modeling ser-
vice periods (e.g. opening hours) of points. Further, Time Dependent TOP
(TDTOP)[3] makes it possible to consider variability within the distances be-
tween the points (e.g. walking or traveling by public transport). The Multi
Constrained TOPTW (MCTOPTW)[8] problem represents a specific variant,
where it is possible to express certain additional knapsack constraints, such as
limiting the total cost to spent for visiting points, or enforcing upper limits
about the number of points of certain category that can be visited (e.g. at most
three points of the category of architecture). Furthermore, Multi Constrained
Multiple TOPTW (MCMTOPTW)[9] is used to model multiple periods for
multiple users (e.g. multiple day trips for multiple tourists), where each user
gets its personalized itinerary, which, at certain points can overlap, hence al-
lowing them to be together for some part of the trip. For an extensive study
of the existing variants of OP and the respective approaches used for solving
them, the reader is referred to Gunawan et al. [6].

In this paper, we define a new model, tagged as MCTOPTW with Patterns
(MCTOPTWP), which enables adding an additional hard constraint that en-
forces the presence of a pattern in the form of a predefined sequence of points
within each period of the itinerary. This model will allow the tourist to make
certain types/categories of POIs as mandatory to be included into the itinerary
[4], and moreover, the order of visits to such types/categories is enforced.

3 Problem Formulation

In more specific terms, the MCTOPTWP problem consists of the following
inputs:

Number of tours. The total number of visiting periods (e.g. days).
Budget. The whole budget available for all tours.
Points of interest (POI). These are locations described by geographic
coordinates (latitude and longitude), visit duration, satisfaction score, open-
ing and closing time of the location, cost of the visit and the category of
the location (might contain multiple categories).
Max allowed visits per category. This represents maximum number of
visits per category type of POI for the tour, example Museum: 3 would
allow us to visit at most 3 museums during our tour.
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Patterns. Patterns represent sequence of categories of POIs that should
be visited, for example a pattern could consist of the following: Museum,
Castle, Natural Park.

In our problem there are no soft constraints and all hard constraints must
be satisfied in order to have a valid solution. The problem is defined by the
hard constraints depicted below:

Visit once. Each POI could be visited at most once during the whole tour
no matter in which day.
Time window. A POI cannot be visited before it’s opening time or after
it’s closing time, however a visit could last after it’s closing time if the visit
starts before closing time.
Day duration. During each day of the tour we cannot exceed the duration
defined by opening and closing time of starting POI.
Starting POI. Each daily visit should start from the first POI and end
up at same POI.
No simultaneous visits to POIs. During each visit we can visit at most
one location at a time.
Budget limit. Total cost of all days should not exceed the input budget.
Max visit per category. During the whole tour we should not visit more
POIs of specific category than the defined number in input.
Pattern sequence. It is important that every day should fulfill its cat-
egory pattern (sequence) and respect its POI order, although other POIs
(of any category) could be visited in between. For example if we have the
pattern Museum, Castle, Natural Park for a specific day, during that day
we could visit POIs of categories Museum, Castle, Seaside, Natural Park.
Note that Seaside category is not part of the pattern, still it can be visited,
since the required order (in the pattern) Museum, Castle and Natural Park
is maintained.
Travel duration. During the visit we should calculate also the travel
duration from one POI to another. The duration is calculated as Euclidean
distance between the geographic locations of any two POIs.

The objective function of the problem is maximizing the total satisfaction
score of the tour which consists of sum of the satisfaction scores of each visited
POI. We can increase this score by visiting as much POIs as we can while
respecting hard constraints and reducing the waiting time between consecutive
visits.

4 Search Method

The search method is based on the Simulated Annealing (SA) approach as
presented in Algorithm 1. In abstract terms, the proposed approach can be
described as in the following:

Search Space. The search space consists of the combinations that allocate
all POIs into one of the two subsets. The first one makes the assigned
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subset, which represents a sequence of POIs (i.e. that make the tourist
itinerary), whilst the second subset contains the unassigned POIs (i.e. those
that do not get placed into the tourist itinerary). The states that violate
the hard constraints are excluded from the search space.

Neighborhood Structure. The neighborhood structure consists of the
union of three basic moves:

Insert: Inserts a POI from a unassigned subset into the assigned subset
Remove: Removes a POI from the assigned subset and places it into
the unassigned subset, and
Swap: Swaps two POIs between the assigned and unassigned subsets.

In the course of a given iteration, we select a non-pivot POI that is within
the itinerary and takes up the larges amount of time, then we replace it
with one of the POIs outside of the itinerary. The replacement policy is
based on the heuristic that tends to chose POIs of types that are less
represented into the itinerary and have high satisfaction factors. After the
swap move, we successively apply the insert move aiming to fill empty
spaces that might have appeared. Whenever a certain POI is subject to a
move, than all the following POIs are shifted forward or backward in time
(in the respective itinerary of the affected day) to reflect the changes that
occurs due to the process of moving the POI.

Cooling Strategy. The cooling strategy is based on the function defined by
Lundy and Mees [7] that is expressed by equation Tt = Tt−1/(1+βTt−1). A
low value of β parameter (typically close to zero) makes the temperature
change at a slow rate, hence making the algorithm do more exploration
into the search space.

Stopping Criterion. The stopping criterion of the algorithm is determined
by the minimal temperature parameter, which in this case is set to zero.

Initial Solution.The initial solution is constructed based on two phases, the
first adding greediness and the second adding randomness attributes to the
initial solution. The first phase uses the so called concept of pivoting, where
some selected pivot POIs are placed first into the itinerary. For a given
day, for each type in the pattern sequence, we make a group of POIs that
belong to that specific type, and then we order them (in decreasing mode)
based on their satisfaction factor. The POI with the highest satisfaction
factor, in a given group, is selected first to act as a pivot POI, hence it
will be the first to be considered for insertion into the itinerary of that
given day. In case, the first POI does not meet the hard constraints, then
the process of selection of a pivot POI is repeated for other candidates in
the corresponding group, by using a backtracking strategy. In the second
phase, the remaining places are filled randomly with other POIs that are
not part of the itinerary yet.

Perturbation. The perturbation mechanism uses all of the three moves in
a sequence and it is applied only when a number of iterations without
improvement are passed (as defined by MAX ITERS parameter). First, it
removes randomly a number (as specified byMAX DEL parameter) of non-
pivot POIs from the itinerary. Then, it makes a number (that is selected
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at random between MIN TRIES and MAX MAX ) of consecutive swaps
between pivot POIs within itinerary and pivot POIs outside of the itinerary.
Finally, it makes several attempts (as specified by MAX INS parameter)
to randomly insert unassigned POIs into the itinerary.

Algorithm 1 Simulated Annealing
1: procedure Solve(input, Tmin, Tmax, β,MAX ITERS,MAX DEL,MIN TRIES,

MAX TRIES,MAX INS)
2: S,Q,P← generateInitialSol(input) // S - solution, Q - unassigned, P - pivots
3: best← S, t← Tmax, i← 0
4: while t > Tmin do
5: a← findPoiWithHighestSpace(S)
6: if a is pivot then
7: i← MAX ITERS
8: else
9: Q← sort(Q)
10: for b in Q do
11: R← clone(S)
12: type← selectTypeByPolicy(b)
13: if swap(a, b, type,R) then
14: inserted← fillEmptySpaces(R,Q)

15: if eval(R) > eval(S) or e
eval(R)−eval(S)

t > random[0, 1] then
16: S← R
17: remove(inserted,Q), remove(b,Q)
18: add(a,Q)
19: end if
20: if eval(S) > eval(best) then
21: best← S, i← 0
22: else
23: i← i+ 1
24: end if
25: else
26: i← i+ 1
27: end if
28: end for
29: end if
30: if i > MAX ITERS then
31: randomRemove(S,Q,P,MAX DEL)
32: swapPivot(S,Q,P,MIN TRIES,MAX TRIES)
33: randomInsert(S,Q,MAX INS)
34: i← 0
35: end if
36: t = t/(1 + βt)
37: end while
38: return best
39: end procedure
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Table 1 Comparison of the results of simulated annealing against Iterated Local Search
approach

Iterated Local Search (ILS) Simulated Annealing (SA)

Instance Time (sec) Fitness (best) Time (sec) Fitness (best) Fitness (avg) ILS vs. SA (%)

MCTOPTWP-1-pr04 0.49 433 2.21 369 306.9 14.8
MCTOPTWP-1-c105 0.08 314 2.08 330 305.0 -5.1
MCTOPTWP-2-c108 0.25 654 1.08 570 496.0 12.8
MCTOPTWP-2-pr07 0.27 540 1.81 513 435.1 5.0
MCTOPTWP-2-pr08 0.96 764 2.94 655 546.1 14.3
MCTOPTWP-3-pr01 0.19 586 1.25 550 490.0 6.1
MCTOPTWP-3-pr09 2.82 1133 2.45 838 679.5 26.0
MCTOPTWP-3-c107 0.29 861 1.40 800 721.0 7.1
MCTOPTWP-4-r111 0.61 858 0.94 728 633.9 15.2
MCTOPTWP-4-pr04 1.86 1464 4.30 1120 920.5 23.5

5 Results

The above described model is tested by using a test set of ten instances that
are derived based on a large instance set in the literature. Further, the results
of our approach 1 are compared against the Iterated Local Search approach
of [10] for the TOPTW, but which we adopted for the new model presented
in this paper (i.e. MCTOPTWP). The adopted ILS solver can be obtained
in GitHub 2. As it can be seen in Table 1, in terms of fitness, in one (out of
ten) instances our algorithm performs better than the ILS approach, and, in
average, our algorithm falls behind the ILS for about 12% . In addition, in
terms of computation time, our approach has an average computation time of
2.04 sec, while the ILS approach takes, in average 0.78 sec.

6 Conclusion and Future Work

The results presented above show that our approach is quite quick as it is able
to produce good solutions in a matter of few seconds, which makes it suitable
for use in practical applications. As part of future work, new neighborhood
operators will be developed and the algorithm will be tested against a greater
set of instances that are derived from the existing test in the literature.

Acknowledgements We thank Bsc. Festim Prebreza for implementing, from scratch, the
state of the art algorithm ILS[10], who made it possible for us to have reference results for
comparison purposes.
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1 Introduction

The Test Laboratory Scheduling Problem (TLSP) arises in a real-world indus-
trial test laboratory, where a large number of activities in multiple projects
has to be scheduled, subject to several legal and operational constraints. It is
an extension of the well-known (Multi-Mode) Resource-Constrained Project
Scheduling Problem ((M)RCPSP) (see e.g. [2,5]) which, in addition to other
extensions, includes several unique features.

Most importantly, the activities to be scheduled (jobs) are not monolithic,
but composed of multiple smaller units called tasks and derive all their prop-
erties from the tasks they contain. The grouping of tasks into jobs must be
determined by the solver as part of the solution process. A similar concept ex-
ists in the form of batch scheduling (e.g. [14,12]) or schedule-dependent setup
times (e.g. [8,9]). The difference is that in these settings, tasks are scheduled
directly and batches arise implicitly from the final schedule.

TLSP also uses heterogeneous resources, with general restrictions on which
units of a resource can be used for each task. While usually, variants of RCP-
SPS assume a homogeneous resource model, similar restrictions can be found
in the Multi-Skill RCPSP (MSPSP) [1], where each resource unit possesses a
set of skills and requirements are also formulated in terms of skills.
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Finally, TLSP introduces the notion of linked tasks, which have to be per-
formed by the same employees. To the best of our knowledge, no other pub-
lished variant of TLSP contains a similar concept. The only reasonable close
approximation can be found in [13], where (some) resource assignments are
modeled as different modes and some activities are constrained to be per-
formed in the same mode.

Previous solution approaches have focused on a subproblem of TLSP, where
a suitable grouping of tasks into jobs is given as input and cannot be modified
by the solver (TLSP-S) [11,4]. However, such a ”known-good” grouping cannot
always be provided, and simple greedy grouping approaches often result in
inferior or even infeasible groupings.

In this extended abstract, we extend the metaheuristic algorithms from
[11] by new neighborhoods that deal with the grouping of tasks into jobs.
This way, we obtain a solution approach for TLSP that does not require a
provided initial grouping. We show that using Simulated Annealing (SA) with
these new neighborhoods, we can quickly create high-quality schedules even
for large instances. Preliminary results indicate that this approach produces
better results than both SA for TLSP-S (even considering that the latter has
the advantage of knowing a good grouping from the start). It also outperforms
other solution approaches for TLSP, including an exact Constraint Program-
ming (CP) model and, under tight time limits, a Very Large Neighborhood
Search (VLNS)[3].

2 Problem definition

TLSP was first defined in a technical report [10], which also contains the full
problem description. We provide here a summary of the main properties and
constraints.

In TLSP, the solver has to find a schedule which consists of a partitioning
of the tasks into jobs, and an assignment of a mode, timeslot and resources
for each job.

A job derives its properties from the tasks it contains, which must all come
from the same project and family. Within a job, tasks are executed sequentially,
but without any defined order. This implies that it must fulfill all requirements
of each task for its whole duration, which is the sum of the durations of its
tasks plus an additional setup time. For example, the set of available units of
each resource is the intersection of the available units of each contained task.

Feasible schedules must satisfy a number of constraints. This includes re-
lease dates and deadlines, available resources, linked tasks (and jobs), prece-
dence constraints, fixed assignments, and others.

The quality of a schedule is determined via an objective function that is
the weighted sum of several criteria, such as the number of jobs, the total
completion time from the start to the end of each project, the number of em-
ployees assigned to each project, preferred employee assignments and internal
target dates, which are usually slightly before the actual deadline.
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3 Local Search framework

In this section, we give an overview of the local search framework and the
Simulated Annealing (SA) metaheuristic described in [11], where it was used
to solve TLSP-S.

The main concept of the framework is that of neighborhoods, which provide
various methods to access the moves they contain. Solver implementations,
such as metaheuristics, can be easily implemented and adapted for different
problem variants simply by setting the neighborhoods they operate on.

In [11], we implemented different neighborhoods for TLSP-S. One of the
best performing configurations was a combination of two neighborhoods, called
JobOpt and EquipmentChange. JobOpt contains moves that modify the mode,
timeslot, workbench and employee assignments of a single job, while Equip-
mentChange contains moves that replace a single assigned equipment unit by
a different one. This special handling for equipment was required due to the
sometimes huge number of potential equipment assignments, which made a
neighborhood that simultaneously swapped all resources unwieldy in practice.

From among several different well known metaheuristics we implemented
for our framework, we achieved the best results for TLSP-S with Simulated
Annealing (SA) [7].

4 New neighborhoods

The adaptation required to make the solver for TLSP-S described in the pre-
vious section also suitable for TLSP is the introduction of new neighborhoods
that contain regrouping moves, together with a careful reconfiguration of the
search algorithm. If these neighborhoods are combined with those for TLSP-S
[11], the same search algorithm can be used to solve also instances for TLSP.

The main challenge presenting itself is the number of potential partitions
for the tasks in a family, which grows exponentially with the size of the family
(already 115975 combinations for 10 tasks, which is met or exceeded by 6% of
all families in our data sets). Moreover, many of these groupings (in particular
if the tasks are short) will result in identical or nearly identical jobs.

We developed three new neighborhoods that modify the task grouping of a
project in different ways. In combination with the existing neighborhoods for
TLSP-S (JobOpt and EquipmentChange), which deal with mode, timeslot and
resource assignments, these form a complete and efficient set of neighborhoods
for TLSP.

All three new neighborhoods are implemented in such a way as to guarantee
that their moves do not result in any new hard constraint violations, except
for constraint H8 (Single Assignment) and H11 (Linked Jobs), where conflicts
are allowed. This entails the following general restrictions on moves:

– Whenever two existing jobs are involved, they must belong to the same
project and family.

– Fixed tasks cannot be moved to a different job.
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– Whenever one or multiple tasks are added to an existing job, its mode and
resource assignments must be available for all added tasks.

– In addition to the above point, there must also be a valid timeslot assign-
ment for the job, respecting both time windows (which may changed due
to the added tasks) and precedence constraints. In particular, moving tasks
must not result in cycles in the precedence graph.

The new neighborhoods are:

Single Task Transfer: A single task from a source job is moved to a target job.
Resource assignments are kept as-is, except where requirements change.
In this case, resource assignments are adjusted as necessary. Mode and
timeslot assignments are not modified (only exception: the target job may
by moved to an earlier timeslot if necessary to fulfill due date or precedence
constraints).

Split Job: A job is split in two by moving a randomly selected subset of tasks
to a new job. It is guaranteed that doing so does not introduce cycles
in the dependency graph and each job receives at least one task. For the
mode, timeslot and resource assignments of the new job, several strategies
are possible (see below). Resource assignments of the source job may be
adjusted as described above.

Merge Job: All tasks of a job are moved to another job and the source is
deleted. As for the transfer, resource assignments and timeslot of the target
may have to be adjusted, but are otherwise kept as-is.

We have implemented different strategies to adjust resource assignments
for affected jobs, if the requirements change due to a move (if tasks are added
or removed, requirements can only increase or decrease, respectively). The
resource units to add/remove can be chosen either randomly from all available
units or the best units can be chosen - i.e. those that minimize the conflicts
involving the job.

For the newly created job in the Split Job neighborhood, which does not
have any initial assignments, different options are available. The timeslot can
be either directly after the end of the source, chosen randomly (within time
window and respecting precedence constraints) or the position that minimizes
conflicts. The resource assignments can be copied from the source (and ad-
justed using either of the above strategies), assigned randomly or chosen such
that they minimize conflicts in the selected position.

5 Preliminary Results

For our experiments, we used the same solver implementation as in [11], with
the addition of the three new neighborhoods. We used SMAC3 [6], version
0.11.0, to tune the following configuration parameters (six independent param-
eters in total): The selection probabilities for the five neighborhoods during
each step and the strategies to adjust resource assignments or handle assign-
ments for the newly created job in the Split Job neighborhood.
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The benchmark data set is the same as the one used in [11], which can be
downloaded at https://www.dbai.tuwien.ac.at/staff/fmischek/TLSP/. It
contains 30 randomly generated instances, ranging in size from 5 projects and
around 30 tasks up to 90 projects and over 1500 tasks, as well as 3 anonymized
real-world instances from our industrial partner.

Our results show that with a timeout of 10 minutes, feasible solutions
could be found for all instances in nearly all runs, starting out from a simple
greedily constructed initial grouping. All neighborhoods contributed to finding
feasible solutions. Omitting any single neighborhoods led to a strong decrease
in the number of feasible solutions, despite low weights for the Split and Merge
neighborhoods in the best configuration found by SMAC.

We also compared our results to those for TLSP-S, using the algorithm and
neighborhoods reported in [11]: On average, results for TLSP are better on 19
of the 33 instances, despite the fact that we did not start out from a known
good and guaranteed to be feasible grouping. For some instances, we could
even generate schedules that are better than the proven optima for TLSP-S
under the previously known fixed grouping.

Our results also improve upon those achieved using an exact CP model
for TLSP written in MiniZinc. In particular for instances with 20 projects or
more, SA always found better solutions, with up to half the penalty of the
results using CP.

In comparison with VLNS [3] using the CP model internally, SA finds
competitive results overall. As for CP, the relative performance of SA is better
on larger instances, where it slightly outperforms VLNS.

Results for longer timeouts of two hours indicate similar findings.

6 Conclusions

We have developed three new local search neighborhoods that contain task
(re)grouping moves for TLSP. They can be used in combination with existing
neighborhoods for mode, timeslot and resource assignments to solve the full
TLSP, without any known initial grouping.

With our local search solver using simulated annealing, we could create
high-quality schedules, that show improvements compared to TLSP-S, which
starts out from a known good grouping. This approach also outperforms a CP
model for TLSP on most instances, and is significantly better on all instances
with more than 20 projects. On these large instances, it is also slightly better
than a VLNS approach, while remaining competitive on the smaller instances.

For the future, we aim to perform extensive evaluations of our algorithms
and their performance, and further improve the task grouping operators. We
also plan to investigate other solution approaches for TLSP, such as hyper-
heuristics.
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A Hybrid Approach for Paint Shop Scheduling in
the Automotive Supply Industry

Extended Abstract

Felix Winter · Nysret Musliu

1 Introduction

Modern day paint shops of the automotive supply industry need to manufac-
ture a large number of products every day. As manual planning approaches
can nowadays hardly cope with the growing demands of car manufacturers
that are raised by the recent trend towards full automation, there is a strong
need for automated scheduling techniques in this area.

One of the most important cost objectives of any automotive paint shop is
to minimize the color changes that appear in the production sequence. Since
the painting equipment has to be cleaned after each change, any color change
will lead to a loss of valuable resources and can cause problematic delays.
Minimizing the required color changes is not an easy task on its own, but
several constraints that restrict technically feasible color sequences make it
even more challenging to automatically create efficient schedules in practice.

In the literature, many publications exist on the topic of minimizing color
changes in automotive scheduling problems (e.g. [4,3,2]) and several variants
have been shown to be NP-complete [1]. However, most of the previous publi-
cations focus on problems that appear in car manufacturing, which although
similar, include different constraints and objectives than the ones that are
occurring in paint shops of the automotive supply industry.

Recently, we introduced a real-life paint shop scheduling problem from the
automotive supply industry together with a set of 24 real-life problem instances
in [6]. In [5] and [7] we further investigated exact approaches based on con-
straint programming for paint shop scheduling and showed that the problem
is NP-hard. Experimental results revealed that exact approaches could prove
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optimal results for some of the smaller instances, but could not solve any
of the larger instances in reasonable time. The empirical evaluation further
showed that a simulated annealing approach can successfully produce feasi-
ble solutions for all real life instances within one hour. However, the number
of required color changes in the solutions was still very high for most of the
instances, resulting in schedules that have a large potential for further cost
improvements in practice.

In this work, we investigate innovative solution methods that can hybridize
exact and metaheuristic approaches to quickly find cost efficient schedules for
real life paint shop scheduling problems. To realize an enhanced minimization
of the required color changes in paint shop schedules, we propose a novel
problem formulation that can be used to minimize the color changes of a given
feasible solution without violating any of the problem’s hard constraints.

The main idea behind the new formulation is to take a candidate solution
to the paint shop scheduling problem and formulate a minimization problem
based on the given solution that aims to minimize the color changes in the
schedule without changing decisions on the scheduled materials and produc-
tion devices. Therefore, an exact approach solving the proposed minimization
problem does not need to consider the complex constraints regarding materi-
als and production devices that appear in the original paint shop scheduling
problem which caused previous exact approaches for the original problem to
be impractical for large real life instances.

We provide a constraint programming model that we utilize to efficiently
find optimized solutions to the new problem formulation and show that we can
thereby improve feasible schedules that have been achieved with metaheuris-
tic approaches. Furthermore, we investigate destroy and repair neighborhood
operators that allow the incorporation of the proposed exact approach into
metaheuristic methods within the framework of large neighborhood search.
Finally, we additionally propose a novel construction heuristic that can pro-
duce cost efficient initial solutions for local search, and hence can improve the
solution process for large scale real life instances.

2 Intermediate Experimental Results

We implemented a first prototype version of the proposed novel construction
heuristic and large neighborhood search to produce a first set of intermediate
results. All experiments have been conducted on an Intel Xeon E5345 2.33 GHz
CPU with 48 GB RAM under a time limit of one hour. Table 1 summarizes the
results on 24 publicly available problem instances for paint shop scheduling1.

The left side of the table shows experimental results on the smaller in-
stances (I1-12), while the right side shows results on the larger instances
(I13-24). Columns labeled LS display results achieved with the local search
approach from [6], while columns labeled CP show results produced with the

1 https://www.dbai.tuwien.ac.at/staff/winter/
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LS LNS CP LS LS+CH LNS+CH CP

I1 851 799 775* I13 116235 20060 26168 -
I2 886 853 842* I14 118628 27766 35088 -
I3 995 980 961* I15 180863 54077 51533 -
I4 1256 1061 918* I16 262252 96744 78859 -
I5 598 607 530* I17 421777 - - -
I6 892 872 842* I18 581021 - - -
I7 1116 1113 1040 I19 555829 543264 586260 -
I8 2599 1775 1237* I20 930564 629729 606886 -
I9 2198 1746 992 I21 917955 - - -
I10 1223 1243 966 I22 1128716 - - -
I11 5652 5960 - I23 1889804 - - -
I12 5973 7348 - I24 2086450 - - -

Table 1 Table showing the intermediate experimental results we performed using 24 real
life problem instances.

state-of-the-art exact technique from [7]. Column LNS shows results achieved
with the prototype for the proposed large neighborhood search, whereas columns
LS+CH and LNS+CH show results achieved with the new construction heuris-
tic together with local search and large neighborhood search respectively. Re-
sults marked with a * denote proven optimal solutions, where a - indicates
that no feasible solution could be reached within the time limit.

We can see in the intermediate results that results produced with large
neighborhood search lead to improved results compared to the existing local
search method for the majority of the small instances. For the larger instances
I13-24 the results show that the proposed construction heuristic leads to a
significant improvement in solution quality for six of the instances, but is
not able to produce feasible solutions for all instances within the time limit.
We further observe that large neighborhood search does not always lead to
improved results for the larger instances, but achieves improved results for
instances 15 and 16.

The reason why the prototype of the construction heuristic can currently
not produce feasible solutions for all instances is that the computation of the
initial schedule is not fast enough yet for some of the instances that need to
schedule a very large number of jobs. This is because the current implemen-
tation finishes execution just after the best position for each single job in the
initial schedule has been calculated. We expect that the approach will be able
to produce solutions for all instances in our next implementation, when we
introduce limits on the time budget for the generation of initial solutions.

3 Future Work

The intermediate results for instances I13-16 and I19-I20 look promising as the
first prototype implementation of the proposed techniques already was able to
provide six novel improved upper bounds in our experiments. In the next
steps, we plan to investigate additional variants of the destroy operator for
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LNS. Afterwards, we want to utilize automated parameter configuration tools
to further tune the performance of LNS, before we later conduct a systematic
experimental study of the proposed techniques, where we expect to reach novel
improved upper bounds for several real-life paint shop scheduling instances.
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and the Christian Doppler Research Association is gratefully acknowledged.
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Abstract We propose ideas towards a framework for generating benchmark
nurse rostering instances in an automated fashion. The framework makes use
of a newly developed automated instance generation approach based on high-
level constraint modelling and automated algorithm configuration. It allows a
modeller to change the kind of instances produced simply by imposing con-
straints on the properties expected to be satisfied by the instances generated.

Keywords nurse rostering, constraint modelling · instance generation

1 Introduction

Nurse rostering problem [9,5,20] is one of the most extensively studied prob-
lems in operation research [18]. The problem consists of assigning nurses with
a certain skill to a working shift of a day. The assignments spread over a
planning horizon, normally from a week to a month. The number of nurses
required for each triple of days, shifts and skills are given. There are often sev-
eral hard constraints that need to be satisfied, such as avoiding under-staffing
and impractical shift patterns (e.g., a nurse cannot work a Night shift followed
by an Early shift). Besides, constraints that can be violated, but should be
satisfied as much as possible are expressed as soft constraints. Some examples
of soft constraints include the minimum and maximum number of consecutive
working days that a nurse can be assigned to. There are several variants of
nurse rostering problems, depending on how the hard and soft constraints are
stated. We refer to [5,9,20] for an overview of the problem and its variants.

Several algorithmic approaches have been proposed for solving nurse ros-
tering problems during the last three decades. They include mathematical
programming [19], constraint programming [17], metaheuristics [8], hyper-
heuristics [3] and hybrid approaches [6]. Each approach often has their own
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strength and weakness. For example, constraint programming approaches of-
fer the advantage of being flexible, as new constraints can be easily supported
without interfering into solvers’ implementation. However, they may suffer
from the issue of scalability, and in some cases cannot solve large-size in-
stances effectively as problem-specific solving approaches [23]. Metaheuristic
approaches often find good-quality solutions in a reasonable amount of time
and have good scalability, but they lack of the ability to prove optimality of
solutions found. Even approaches within the same group can have different per-
formance depending on the problem variants and instance distributions [21].

Having benchmark instances with different levels of difficulties is crucial
for assessing performance of different solving approaches, and for understand-
ing their strength and weakness [22]. A variety of benchmark instances have
been proposed and made publicly available for nurse rostering problems. The
KAHO dataset1 [20] is constructed using real-world data from two Belgian
hospitals where for each ward three different scenarios are considered: nor-
mal, high amount of unforeseen work and unexpected absence of nurses. The
Nottingham dataset2 [4] consist of artificial and real instances collected world-
wide. NSPLib3 [24] provides an instance generator and large sets of nurse
rostering instances. The First [12] and Second International Nurse Rostering
Competitions [7] propose artificial benchmark instance sets derived from real-
world data. Recently a unified data format, namely XESTT 4, for representing
several nurse rostering benchmark datasets has been proposed [15].

The necessity of having rich and diverse benchmark instance sets for nurse
rostering makes the idea of an automated instance generator plausible. An-
other motivation comes from the successful applications of automated algo-
rithm configuration in recent years [13]. Imagine that we have a highly con-
figurable nurse rostering solver. When a practitioner wants to adapt a solver
to a specific nurse rostering problem in a certain context of a hospital, the
first step is to have instances that reflect the pattern of the local context. An
automated algorithm configuration tool, such as SMAC [14] or irace [16], can
then be used to find the best parameter setting of the solver on the given
instance distribution.

In [24], Vanhoucke and Maenhout proposed an instance generator that
characterizes an instance through various complexity indicators. They included
problem sizes, preference distribution measures, coverage distribution mea-
sures, and time related constraints. They implemented a dedicated procedure
for generating instances with properties corresponding to specific indicators’
values as parameters.

The generator in [24] covers a wide range of nurse rostering instances’
aspects. However, due to the complexity and diversity of nurse rostering prob-
lems in practice, there can be additional characteristics on the instances that

1 https://people.cs.kuleuven.be/~pieter.smet/nurserostering.html
2 http://www.schedulingbenchmarks.org/nurse.html
3 https://www.projectmanagement.ugent.be/research/personnel_scheduling/nsp
4 http://jeffreykingston.id.au/xestt/
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a practitioner might wish to add to reflect the local context. For example, in a
normal department of a hospital, the demand for highly skilled nurses can be
very high during the middle of the week, while being low during the beginning
and the end of the week. On the other hand, in an intensive care department,
the demand for highly skilled nurses are generally much higher on most days
compared to the demand for less skilled nurses.

In this work, we propose an alternative approach for automated nurse
rostering instance generation based on constraint modelling and automated
algorithm configuration. The high-level constraint modelling language used by
our approach, namely Essence [10], allows for the flexible specification of
additional characteristics on instances generated. Moreover, the combination
of constraint programming and automated configuration ensures feasibility
and diversity of instances generated.

2 Methodology

The flexible framework for generating nurse rostering instances proposed in
this paper is an extension of the automated instance generation system for
constraint programming proposed in [1,2]. The system makes use of Essence,
a modelling language designed for the specification of problems in combinato-
rial decision and optimisation [10]. This system takes an abstract specification
of a problem in Essence and automatically converts it into a parametrised in-
stance generator. Desirable properties of the instances being generated can be
incorporated into the generator as constraints. The system comes paired with
a constraint programming solver (minion [11]) that generates an instance by
solving the generator specification, and an automated algorithm configurator
(irace [16]) that allows efficient search for generator’s parameter settings that
cover feasible instances of desired properties.

Essence is a high-level constraint modelling language that supports sev-
eral abstract data types. The language can capture the structure of a problem
above the level of abstraction at which modelling decisions are made. In our
context, this enables the modeller to easily add or remove specific constraints
on properties the instances must satisfy, which consequently change the kind
of instances produced by the (automatically created) instance generator.

The nurse rostering instance generation framework will include two com-
ponents. The first one is a nurse rostering specification in Essence that in-
corporates all the indicators proposed in [24] as constraints. We will also add
a number of additional properties observed on real-world instances. One ex-
ample is the distribution of demand for highly-skilled nurses during a week.
The properties encoded in the specification can be easily deactivated if not
needed. As a first step, we will model the specification proposed in the Second
International Nurse Rostering Competition [7]. The specification can also be
modified to comply with other nurse rostering variants. The second component
is the automated instance generation system, which receives as input the spec-
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ification from the first component, and automatically generate a diverse set of
feasible instances following the distribution indicated in the specification.

This is a work in progress and we plan to make the framework and the
instances generated publicly available once they are ready. We believe that this
approach will increase the diversity of scenarios covered by nurse rostering’s
benchmarks and help in the development of new algorithms applicable in real
world healthcare.
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Abstract The personnel rostering problem is the problem of finding an optimal
way to assign employees to shifts, subject to a set of hard constraints which all
valid solutions must follow, and a set of soft constraints which define the relative
quality of valid solutions. The problem has received significant attention in the
literature and is addressed by a large number of exact and metaheuristic methods.
In order to make the complex and costly design of heuristics for the personnel
rostering problem automatic, we propose a new method combining Deep Neural
Network and Tree Search. By treating schedules as matrices, the neural network
can predict the distance between the current solution and the optimal solution.
It can select solution strategies by analyzing existing (near-)optimal solutions to
personnel rostering problem instances. Combined with branch and bound, the
network can give every node a probability which indicates the distance between it
and the optimal one, so that a well-informed choice can be made on which branch
to choose next and to prune the search tree.

Keywords Combinatorial Optimization · Deep Learning · Timetabling ·
Personnel Rostering
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1 Introduction

In various occupations and work scenarios, arranging employees to different shifts
is a difficult job. The difficulty is that different employees have different require-
ments for life and work, which leads to preference of each employee. And there
are also requirements of the law that must be followed or diverse properties of dif-
ferent occupations. These regulations are what we call soft constraints and hard
constraints. Inflexible or unreasonable work schedules may affect the personnel
lives of employees, affect their emotion, make them dissatisfied with their work,
and may lead to a high turnover rate, which may have an adverse effect on the
employer’s operation and the experience impact of customers. If it can ensure that
employees are arranged for the right job at the right time. From the perspec-
tive of employees, such schedule can improve employee job satisfaction, reduce
employee dissatisfaction, fatigue and pressure to improve work efficiency and ser-
vice quality(Burke, De Causmaecker, Vanden Berghe & Landeghem, 2004). From
the perspective of employers and companies, an excellent schedule can increase
the retention rate of employees and maintain a reasonable financial budget for
employers.(Kazahaya, 2005; M’Hallah & Alkhabbaz, 2013)

Committed to solving such real-world problems, the personnel rostering prob-
lems have received great attention in the past decade. The personnel rostering
problems aim to generate a scheduling table based on the determined number
of employees and the time period. The schedule consists of a series of different
types of shifts (for example, morning, evening, and day-off) during the entire time
period. The basis for shifts is based on conditions such as the preference of em-
ployees for working hours and the requirements of laws or professional regulations,
which we call hard constraints and soft constraints. Hard constraints are condi-
tions that must be met for shift scheduling, while soft constraints can be violated
to a certain extent, but must pay a price for this. The quality of the schedule
can be evaluated by the penalty value for violating soft constraints. Due to the
complex and highly-constrained structure, personnel rostering problems are often
computationally challenging, and most variants of these problems are classified as
NP-hard.

There has been a lot of research on personnel rostering problems, which can
be divided into two categories: exact methods and metaheuristic methods (Smet,
Brucker, De Causmaecker & Vanden Berghe, 2016). The exact methods mainly in-
clude Integer Programming (IP)(Glass & Knight, 2010; Maenhout & Vanhoucke,
2009; M’Hallah & Alkhabbaz, 2013) and Constraint Programming (CP) (Girbea,
Suciu & Sisak, 2011; Soto, Crawford, Monfroy, Palma & Paredes, 2013), the exact
method can find the optimal solution, but the time cost it pays is also very expen-
sive, and it is usually unacceptable. To solve this problem, the researchers have
proposed metaheuristic methods, including Variable Neighborhood Search(Lü &
Hao, 2012; Rahimian, Akartunalı & Levine, 2017), Genetic Algorithms(Ayob, Had-
wan, Nazr & Ahmad, 2013; Burke, Cowling, De Causmaecker & Vanden Berghe,
2001) and stochastic algorithms (Tassopoulos et al., 2015) and tailored heuristic
algorithms (Brucker, Burke, Curtois, Qu & Vanden Berghe, 2010), these methods
can generate high-quality feasible solution in a short time, but the shortened time
comes at the cost of giving up accuracy.

And even so, these complex methods are not well applied. According to the
literature, many organizations are still manually producing schedules. The research
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has contributed to producing solutions automatically.(Burke, Kendall & Soubeiga,
2003; De Causmaecker & Vanden Berghe, 2010)

We propose a combined Deep Neural Network and Tree Search(DNNTS)based
methdodology. DNNTS is the first method that used Deep Neural Network(DNN)
model to guide tree search to solve the personnel rostering problem. It is based on a
learned model for branch selection during the tree search. The implementation can
be used to solve a number of problems from the literature(Schedulingbenchmarks.org).
These problems have the following characteristics and observations:

1. The (intermediate) solutions of a problem can be represented as m×n matrices
that can be transferred as input for the neural network.

2. The best solution can be found by modifying the initial solution in a number
of simple steps which defining the possible child nodes.

3. The problems have soft constraints which can be expressed in the penalty
function and set the lower bound for the tree search.

The main contributions of this work can be summarized as follows:

1. An automatic method DNNTS is applied to personnel rostering problem.
2. For some specific problems, this method is shown to find a good solution equal

to the best known lower bound.
3. The Deep Neural Network is used to make branch selection in the process of

tree search, which speeds up the search process.
4. Experimental evaluation of different search strategies.

This paper is organized as follows. In Chapter 2, we discuss work on person-
nel rostering and on combining machine learning and optimization techniques. In
Chapter 3, we describe the problem and formal problem definition. In Chapter 4,
we introduce the tree search method, the DNN model and the process of combining
these to solve the personnel rostering problem. In Chapter 5 we test our method,
show the results and make relevant comparisons. In Chapter 6 we summarize and
introduce the future work.

2 Literature review

In this chapter, we first review existing methods for personnel rostering. Similar
methods combining deep learning and optimization are discussed. There are many
optimization methods that integrate deep learning methods in other fields. We
summarize the methods that inspired us, and discuss the connection between these
and our methods.

2.1 Rostering problem

As mentioned before, the methods to solve personnel rostering problems are mainly
divided into two categories, exact methods and heuristic methods. Exact method
are concerned with finding proven optimal solutions. For the direction of IP, Maen-
hout & Vanhoucke (2009) present an exact branch-and-price algorithm for solving
the nurse scheduling problem incorporating multiple objectives and discuss dif-
ferent branching and pruning strategies. Some authors(Girbea et al., 2011; Soto
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et al., 2013) concentrate on CP, and introduce a model including soft constraints.
Mixed integer programming (MIP) is also a method that has attracted much atten-
tion. M’Hallah & Alkhabbaz (2013) describe the nurses’ timetabling problem of a
Kuwaiti health care unit and model it as a MIP. Glass & Knight (2010) start from
benchmark problems and extend their MIP approach to nurse rostering to take
better account of the practical considerations. Column generation has been effec-
tive to determine preference scheduling (Bard & Purnomo, 2005). applied Mixed
Integer Quadratic Programming.

Heuristic methods are mainly concerned with finding a solution quickly, and
even if the number of employees waiting to be scheduled is large and the con-
straints are complicated, an acceptable and feasible solution can be obtained in
an appropriate time. Genetic and Memetic algorithms form an important class
of metaheuristics that have been extensively applied in personnel rostering prob-
lem.(Aickelin & Dowsland, 2000, 2004; Easton & Mansour, 1999; Kawanaka, Ya-
mamoto, Yoshikawa, Shinogi & Tsuruoka, 2001)(Burke et al., 2001) In addition,
there are a lot of attempts on other types of methods, such as Tabu Search Algo-
rithms, some researchers (Burke, De Causmaecker & Vanden Berghe, 1999) pro-
posed a hybrid Tabu Search Algorithm to solve the personnel rostering problem
in Belgian hospitals. Also simulated annealing algorithms. As a representative, an
iteratively local searching method based on simulated annealing(Cheng, Ozaku,
Kuwahara, Kogure & Ota, 2008), and a shift mode method using simulated an-
nealing were proposed.(Hadwan & Ayob, 2010) Aickelin & Dowsland (2004) pro-
posed a mode conversion technique arising at a major UK hospital. And Todorović,
Petrović & Teodorović (2013) proposed the Bee Colony Optimization method to
solve this problem.

Burke et al. (2004) analyze the state of the art of research on nurse roster-
ing problems and categorized papers according to solution methods, constraints,
performance measures, and information on the planning period, the data that is
used, the number of skills, and their substitutability, etc. De Causmaecker & Van-
den Berghe (2010) build on the work of the last decades to produce a classification
system for nurse rostering problems. Vanden Berghe, Beliën, Bruecker, Demeule-
meester & Boeck (2013) present a review of literature on personnel scheduling
and evaluate the literature from different perspectives of personnel characteristics,
decision delineation and shifts definitions, constraints, performance measures, flex-
ibility, application area and applicability of research.

2.2 Deep learning and Optimization

For the combination of deep learning and optimization, some researchers have
made some attempts. For example, Hottung, Tanaka & Tierney (2020) use two
DNN models to guide the tree search to solve Containers Pre-Marshalling Prob-
lem. As is mentioned in the paper written by De Causmaecker (2017), data science
meets optimization when using data science in algorithm construction and apply-
ing deep learning while engineering an algorithm.

Combining operations research and artificial intelligence allows using powerful
solvers such as IBM CP Optimiser(Optimizer, 2015) and Gurobi (Gurobi Opti-
mization, 2015), to be used in hybrid environments. e.g. a method combing CP
and heuristics, which is an iterated local search framework that uses CP for initial
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solution construction and diversification, and a variable neighborhood descent for
iterative improvement. (Stølevik, Nordlander, Riise & Frøyseth, 2011). Another
method divides the original problem into sub-problems, solves sub-problems by
IP, and combines IP and local search to get results (Valouxis, Gogos, Goulas, Ale-
fragis & Housos, 2012). And a less studied combination of IP and CP (Rahimian,
Akartunali & Levine, 2015) allow to take advantage of the complementarity in the
different methodologies. Rahimian et al. (2015) proposed a new hybrid algorithm
of IP and CP to solve the personnel rostering problem. It uses IP to find the best
solution, and CP to find feasible solutions effectively. This hybrid algorithms uses
information from specific problems to reduce the search space, fine-tunes search
parameters and improves the efficiency of the entire search process in a novel way.

Lodi & Zarpellon (2017) and Dilkina, Khalil & Nemhauser (2017) outline meth-
ods for applying learning to variable and node selection problems in MIP. Khalil,
Dilkina, Nemhauser, Ahmed & Shao (2017) use logistic regression to predict when
to apply the original heuristic when solving MIPs. The author uses similar fea-
tures as mentioned by Khalil, Le Bodic, Song, Nemhauser & Dilkina (2016) and
can improve the performance of the MIP solver. There are other papers that use
machine learning techniques to solve MIP (Kruber, Lübbecke & Parmentier, 2017;
Bonfietti, Lombardi & Milano, 2015).

Vinyals, Fortunato & Jaitly (2015) propose a method called a pointer net-
work and train it to generate solutions to traveling salesman problems through
supervised learning. Bello, Pham, Le, Norouzi & Bengio (2016) use reinforcement
learning to train a pointer network for the traveling salesman problem. Kool &
Welling (2018) propose a similar method, which can also be used to solve other
routing problems, such as vehicle routing problems. All these methods focus on the
training and architecture of the DNNs network, rather than merging the DNNs
network into a complex search process.

3 Problem description

There are many personnel rostering problems in different work contexts, such as
nurse scheduling, hotel reception scheduling or other situations. In the personnel
rostering problems, the people waiting to be assigned are called employees, the
different time in everyday waiting to be occupied are called shifts. Employees are
assigned to shifts in a certain period of time according to certain constraints.
Constraints define the limitations of assignments for each employee, there are
hard constraints which the solution must obey and soft constraints which will give
some penalty when the solution does not meet the requirements. These constraints
can be used to model restrictions such as ‘employees should work more than 3
days and less than 6 days a week’ or ‘employee A does not want to work on
Wednesday’(De Causmaecker & Vanden Berghe, 2010; Paul & Knust, 2015). The
obtained feasible assignments that meet all hard constraints are called solutions.
Each solution has a value of penalty, which is determined by the level of compliance
with soft constraints. The personnel rostering problem aims to find an allocation
scheme with the lowest penalty value that meets all hard constraints. It is an
NP-hard problem(Osogami & Imai, 2000).
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Fig. 1 Solution and corresponding mathematical matrix expression

3.1 Formal problem definition

Personnel rostering problems are characterized by a set of employees, a set of
a scheduling period of days, and a set of shifts. A shift is a fixed time interval
which denotes a working period. Each shift is characterized by a unique type
which classifies the shifts in various ways, e.g., by time interval (morning, late),
by required qualifications (senior, junior), or by a combination of these (morning-
senior, late-junior). A shift is considered to occur on the day where its time interval
starts. The number of employees required for each shift can vary from day to day,
and is typically more than one employee. An assignment is the allocation of an
employee to a shift on a day. In this paper, the solution is regarded as an e×t
matrix which contains in each cell either an assignment or a day-off. Days T is a
period during which the assignment begins and ends. Fig.1 shows how to transfer
a solution to a matrix.

Constraints can be expressed as an exact, ranged, minimum or maximum re-
quirement. In the case of exact demand, the specified value is exactly the number of
employees to be assigned. A ranged definition requires that the number of assigned
employees should be within a specified time interval. When such an interval has
no upper(lower) limit, the requirement is defined as a minimum(maximum).(Smet
et al., 2016)

The parameters and decision variables (Curtois & Qu, 2014) are described as
following:
Parameters:

E set of employees.
h number of days in the planning horizon.
T set of days in the planning horizon= {1...h}.
W set of weekends in the planning horizon= {1...h/7}.
S set of shift types.
Rt set of shift types that cannot be assigned immediately after shift type t.
Ni set of days that employee i cannot be assigned a shift on.
lt length of shift type t in minutes.
mmax

es maximum number of shifts of type s that can be assigned to employee e.
bmin
e minimum number of minutes that employee e must be assigned.
bmax
e maximum number of minutes that employee e can be assigned.
cmin
e minimum number of consecutive shifts that employee e must work.
cmax
e maximum number of consecutive shifts that employee e can work.
omin
e minimum number of consecutive days off that employee e can be assigned.
amax
e maximum number of weekends that employee e can work.

qets penalty if shift type s is not assigned to employee e on day t.
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pets penalty if shift type s is assigned to employee e on day t.
udt preferred total number of employees assigned shift type s on day t.
vmin
ts weight if below the preferred cover for shift type s on day t.
vmax
ts weight if exceeding the preferred cover for shift type s on day t.

Decision variables:

xets 1 if employee e is assigned shift type s on day t, 0 otherwise
kew 1 if employee e works on weekend w, 0 otherwise.
yts total below the preferred cover for shift type s on day t.
zts total above the preferred cover for shift type s on day t.

Then the problem can be formulated below:

min
∑
e∈E

∑
t∈T

∑
s∈S

qets(1− xets) +
∑
e∈E

∑
t∈T

∑
s∈S

petsxets+

∑
t∈T

∑
s∈S

ytsv
min
ts +

∑
t∈T

∑
s∈S

ztsv
max
ts

(1)

∑
s∈S

xets ≤ 1, ∀e ∈ E, t ∈ T (2)

xets + xe(t+1)s′ ≤ 1, ∀e ∈ E, t ∈ {1, ..., h− 1} , s, s′ ∈ S (3)

∑
t∈T

xets ≤ mmax
es , ∀e ∈ E, s ∈ S (4)

bmin
e ≤

∑
t∈T

∑
s∈S

lsxets ≤ bmax
e , ∀e ∈ E (5)

d+cmax
e∑

j=d

∑
s∈S

xejs ≤ cmax
e , ∀e ∈ E, d ∈ {1...h− cmax

e } (6)

∑
s∈S

xets + (k −
t+k∑

j=t+1

∑
s∈S

xejs +
∑
s∈S

xi(t+k+1)s > 0,

∀e ∈ E, k ∈
{

1...cmin
e − 1

}
, t ∈ {1...h− (k + 1)}

(7)

(1−
∑
s∈S

xets) +
t+k∑

j=t+1

∑
s∈S

xejs + (1−
∑
s∈S

xi(t+k+1)s) > 0

∀e ∈ E, k ∈
{

1...omin
e − 1

}
, d ∈ {1...h− (k + 1)}

(8)
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∑
w∈W

kew ≤ amax
e ∀e ∈ E (9)

xets = 0, ∃e ∈ E, t ∈ T, s ∈ S (10)

Formula (1) is the objective function, which is to minimize the penalty value.
Constraint(2) ensures that an employee cannot be assigned more than one shift
on a single day. Constraint(3) describes some types of shifts cannot follow others.
Constraint(4) is used to limit the maximum number of shifts of each type that
can be assigned to employees. For example, some employees will have contracts
which do not allow them to work night shifts or only a maximum number of
night shifts. Constraint(5) ensures that the minimum and the maximum work
time. The total minutes worked by each employee must be between a minimum
and maximum. These limits can vary depending on whether the employee is full-
time or part-time. Constraints(6) and (7) describe the consecutive constraints.
Constraint(8) models the minimum consecutive days off in a similar way to the
minimum consecutive shifts constraint. Constraint(9) sets the maximum number
of weekends. A weekend is considered as being worked if the employee has a shift
on the Saturday or the Sunday. Constraint(10) describes some days that employees
cannot work, for example, they are on vacation.(Curtois & Qu, 2014)

4 Method

The DNNTS method integrates DNN into a heuristic tree search to decide which
branch to choose next. The DNN is trained offline by supervised learning on exist-
ing (near-) optimal solutions for the defined personnel rostering problem and are
then used to make branch decisions during the search.

The core idea of the method is to treat each feasible solution as an e×t matrix
as Fig 1, and change the matrix through several predetermined change strategies,
thereby gradually approaching the optimal solution. In the process of solving the
problem, we use tree search to explore all the possibilities, and use DNN to decide
the order to explore. As shown in Fig 2, whenever a new unexplored node A is
found by the tree search, according to predetermined change strategies, it has
three corresponding child nodes B, C and D, the DNN will predict which node
has the highest probability to arrive at the best solution, thereby determining the
next search node C.

In this section, we first describe how to form and train a DNN model to do
prediction. We then explain in detail how personnel rostering problems can be
solved using tree search. Finally, we show how to use DNN in tree search to do
branching decisions.

4.1 Tree search

Methods based on tree search can be used to solve optimization problems. Begin-
ning with the root node, the search tree is explored by systematically exploring
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Fig. 2 Overview of the combination method

the child nodes of the root node and subsequent nodes. The solution of a given
optimization problem can be understood as a leaf node in the tree.

In the process of tree search, each node in the tree represents a feasible ar-
rangement for employees according to the hard constraints. The initial solution
is represented by the root node. The child nodes of a node represent best solu-
tions that can be reached by only one change from a set of predetermined change
strategies.

4.1.1 Change strategies

There are many ways to simply modify the matrix representing a solution, such
as exchanging two rows in the matrix randomly or changing some numbers in the
matrix. To make the search process converge faster, we did related experiments in
section 5.2 and identified three change strategies.

– Strategy 1: randomly change 2 employees’ shifts in one day.
– Strategy 2: randomly change 2 day’s shifts for one same employee.
– Strategy 3: randomly chose one shift where one of the employees doesn’t need

to work, and change his status to work on that shift.

4.2 DNN

The DNN is a method inspired by biological neural networks. A DNN consists of
multiple layers of neurons. Each neuron receives one or more weighted inputs from
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1 0 0

0 1 0

0 1 0

1 1 0

0 1 0

0 1 1

1 0 0

0 1 0

1

Strategy 1

Strategy 2

Strategy 3

Fig. 3 Three change strategies

neurons of the previous layer, summarizes those inputs, and applies an activation
function to the inputs. The value from the activation function is then sent out to
the neurons of the next layer. The DNN “learns” by optimizing the weights on the
arcs of the network.(Hottung et al., 2020)

DNN can be used for both classification (the space Y consists of a set of discrete
values) as well as regression (Y can take any value in R), and we use regression
DNN in this work to predict the probability that a solution might be the optimal
one or might become the optimal one. To substantiate the word “might”, we will
use the distance to express the probability.

Definition 1 (Distance) The distance is the number of simple changes needed
to be used in the current solution to become the best one.

Definition 2 (Probability) The probability is used to measure the possibility
that the current solution might be the optimal solution. For distance ∈ N, k > 0.

probability = 1− k × distance (11)

Simple change has been explained in section 4.1.1. Correspondingly, the shorter
the distance between the current solution and the optimal solution, the higher is
the probability, and the more likely the current solution might be or become the
optimal solution. Fig.4 shows how to understand the distance and probability.

4.2.1 DNN forming

The DNN we use in this paper is a multi-layer DNN as Fig.5 shows. The first
layer is the input layer, which has e× t nodes and is used to one-dimensional the
input multidimensional matrix. The middle layers are hidden layers, the number of
their layers and nodes is determined through parameter adjustment. Each node in
hidden layers uses the activation function, defined as ReLU(x) = max {0, x}. The
output layer contains only one node. Its activation function is a sigmoid function,
defined as S(x) = 1/(1 + e−x), in order to output probability values between 0-1.
As for the optimizer, we use the Adam optimizer (Kingma & Ba, 2014), which is
based on a gradient descent.
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Fig. 4 The link between distance and probability

Fig. 5 The matrix type input of our DNN model

4.2.2 DNN training

The work of training the DNN model is described below. As is well known, the
training set is a dataset of examples used for learning, that is to fit the parameters
of the model, such as weight. A set of representative instances is divided into a
training set and a validation set. Also, these two kinds of sets consist of a set
of data(input) and labels(output). During the process of training, each instance
in the training set is input into the DNN, and propagated by the network, in
order to generate relative output. Then these values are compared to the labels
in the training data using a loss function, which is used to compute the accuracy
of the prediction. In the next step, according to the influence of network weights
on the loss function, the DNN model needs to adjust the weights of the network
in order to reduce the value of the loss function in the next iteration (gradient
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descent). After dealing with all the instances in the training set, the first epoch of
the training is completed. We can repeat the training for many epochs until the
error doesn’t improve at all.(Goodfellow, Bengio & Courville, 2016)

As a research of solving classical problems with new methods, we have many
instances that can be used as the data(input) of the training set, but there is
nothing to use as the label(output) for the training set. It’s impractical to give
every instance a label manually. We will use another method to obtain a relatively
convincible training set for training the DNN model. The method will be explained
in chapter 4.3, after the whole process is described in detail.

4.3 DNN assisted tree search

4.3.1 Search Strategies

There are many kinds of search strategies in tree search, such as depth-first search
(DFS) of nodes that traverse the tree along the depth of the tree, breadth-first
search (BFS) of nodes that traverse the tree along the width of the tree. In this
paper, we refer to the idea of Depth-First-Search and improve it from different
ways. New search strategies can explore the tree according to the probability value
given by the DNN model and also take the penalty into consideration. We will
discuss these strategies in detail below.

Depth-First-Search Depth-First-Search (DFS) is an algorithm for traversing or
searching trees or graphs. This algorithm searches branches of the search tree as
deep as possible. When the edge of node v has been searched, the search will
go back to the starting node of the edge where node v was found. This process
continues until all nodes have been found reachable from the source node. If there
are still undiscovered nodes, select one of them as the source node and repeat
the above process. The entire process is repeated until all nodes are visited. This
algorithm does not adjust the execution strategy based on the information such
as the structure of the graph.

For example, the tree in Fig.7. According to depth-first principle, A is the initial
node which is explored first. Then start from the left node of all unexplored children
of A, that means B is the next node after A. The same way, after exploring B, then
E rather than C, until the bottom of the branch H is explored. Next returning to
an unvisited node next to B, the depth-first traversal is repeated until all nodes
in the tree have been visited. The search order in Fig.6 is A → B → E → H →
F → C → G→ D.

Algorithm1 shows the depth first search strategy. The algorithm starts with
the initial solution s0, stored in a node n, that has several properties. These are
whether the current node is visited, visited(n), the current penalty of associated
solution, penalty(n), the children nodes of the current node, child(n). The penalty
of the best solution p and the best solution bestn are set as the global value.

Probability-Fist-Strategy This strategy also follows the principle of searching the
tree as deep as possible. But we add each node in the tree a value of probability
by the DNN model, and we will use it to replace the left-first order (Probability-
Fist-Strategy (PFS)). That means that when exploring the child nodes of v, the
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Fig. 6 DFS path

Algorithm 1 Depth first search strategy
Input: A node n of search tree.
Global: Penalty of the best solution p, best solution bestn
Output: Node representing the best solution.

function DNNTS-DFS(n)
if isvisited(n) = true then return bestn

isvisited(n) = true
if penalty(n) < p then

p← penalty(n)
bestn ← n

for n′ in child(n)
DNNTS-DFS(n′)

return bestn

child node with higher probability value will be explored first, rather than the left
child node. But this principle only applies to the child nodes of the same layer and
the same parent node. For nodes that are not in the same layer or nodes that are
not a parent node, this principle does not apply.

For example, the tree in Fig.8. node A which is explored first, but the proba-
bility of its left child node is 0.7, less than the right one. So, the next step starts
from D. The same way, after exploring D, then exploring B and its subtree. The
resulting search order in Fig.7 is A → D → B → E → H → F → C → G.
Algorithm2 shows the probability first strategy. The setting is the same as the
Algorithm1, but there is an additional DNN(n), which represent the output of
the DNN model when the solution associated with node n is the input. i.e. The
probability of solution associated with node n.

Probability-Penalty-Strategy In the personnel rostering problem, the penalty de-
termines whether the solution is optimal. When the penalty is taken into con-
sideration is addressed as the Probability-Penalty-Strategy (PPS). We need to
normalize the probability and penalty values to the same unit of measurement,
and give them different weights to get a value to replace the probability value in
the previous strategy.

Algorithm3 shows the probability penalty strategy. The setting is the same
as the Algorithm2, but there are two additional global values w1 and w2, which
represent the weight for probability and weight for penalty respectively.
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Fig. 7 PFS path

Algorithm 2 Probability first strategy
Input: A node n of search tree.
Global: Penalty of the best solution p, best solution bestn
Output: Node representing the best solution.

function DNNTS-PFS(n)
if isvisited(n) = true then return bestn

isvisited(n) = true
if penalty(n) < p then

p← penalty(n)
bestn ← n

Sort child(n) by DNN(n′) for each n′ ∈ child(n)
for n′ in child(n)

DNNTS-PFS(n′)
return bestn

Algorithm 3 Probability Penalty strategy
Input: A node n of search tree.
Global: Penalty of the best solution p, best solution bestn,weight for probability w1, weight

for penalty w2

Output: Node representing the best solution.
function DNNTS-PPS(n)
if isvisited(n) = true then return bestn

isvisited(n) = true
if penalty(n) < p then

p← penalty(n)
bestn ← n

Sort child(n) by w1× DNN(n′)+w2 × penalty(n′) for each n′ ∈ child(n)
for n′ in child(n)

DNNTS-PPS(n′)
return bestn

4.3.2 DNN assisted tree search model

After forming and training the DNN model, it is used in the tree search as follows.
When the node nk is to be explored, the associated SolutionK is changed by 3
strategies as mentioned before, iterating through all the possibilities in each strat-
egy and get 3 sets. The set obtained through strategy 1, 2, 3 are {SolutionK10,
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SolutionK11, SolutionK12, . . . }, {SolutionK20, Solu− tionK21, SolutionK22, . . . },
{SolutionK30, Solution−
K31, SolutionK32, . . . }. Next all possibilities are given to the DNN model. These
matrices of Solution are then propagated through the DNN model. We use a
sigmoid activation function in the output layer to get the result between 0 and 1,
this allows us to use the output as probability. Left the highest probability as the
child node for each strategy, so among 3 strategies, we get 3 child nodes for each
father node. The left probability is then used to decide which child node should
be explored. The decision-making process is determined by the search strategies
proposed in 4.3.1, for example, exploring the node with highest probability first
by PFS. Fig.8 shows a whole process.

4.3.3 Initial dataset

We mentioned that the work applied to personnel rostering problem, although
there are enough solutions (input), but no labels(output). So, we will use an au-
tomated method to generate a dataset for training the DNN model, including
solution and labels.

First of all, for a specific personnel rostering problem that people already know
the best known solution so far, we set the probability of the best known solution so
far to 1, then randomly generate other solutions based on the best known solution.
Actually, it means randomly generate e× t matrices according to the best known
solution. And assign different labels according to the following conditions.

1. The most important thing is to check whether the randomly generated matrix
meets the hard constraint. In case the hard constraint is not satisfied, the data
will not be stored in the generated data set. Only matrices meeting the hard
constraint can enter the next step to judge and assign different labels.

2. In order to give each matrix a label, we need to check the number of change
strategies required(mentioned in chapter 4.3.1) to let the current matrix change
to become the optimal solution for the current specific personnel rostering
problem, then use a piecewise constant function to correspond the number
of changes to the label. The less change strategies are needed, it means the
more probable it is for the current matrix to change into the optimal solution.
Equation12 is the piecewise constant function we use in this work.

f(x) =



0.9 0 < x ≤ 3

0.7 3 < x ≤ 6

0.5 6 < x ≤ 9

0.3 9 < x ≤ 12

0.1 x > 12

(12)

After generating all the data, we use these data to initially train our DNN
model. After training, we can then use the trained DNN model to solve the spe-
cific personnel rostering problem which is already known best known solution. In
a complete solution process, we can get a complete path {s0, s1, s2, . . . , sop} from
how the initial solution s0 changes into the final best known solution sop. Accord-
ing to the length of the entire path and the position of the sk in the path, the
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Fig. 8 The process of Neural Networked Assisted Tree Search for the Personnel Rostering
Problem

distance from the best known solution can be found, from which the higher confi-
dence of probability value can be given. At the same time, whenever enough data
for training the DNN model is obtained, the model can be retrained. The specific
problem model and initial solution s0 are continuously changed to get enough data
to finally complete the model training.

The use of these randomly generated data to train the DNN model at the
beginning will not have a great impact on the efficiency of the final model, because
these data are just to make the model have the ability to solve the problem, maybe
the efficiency of the DNN model trained from the randomly generated data set is
not very high, but at least it can ensure that the model can successfully solve a
specific problem and give a complete path from the initial solution s0 to the best
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known solution sop. It is our purpose to obtain a large number of such paths, so
that we can use the data and labels in these paths to retrain our DNN model with
more accurate data, and through continuous iteration, our model reaches a good
level.

5 Result

We now use the instance to evaluate the performance of our DNNTS method in
3 aspects. In order to measure whether our method is competitive with current
methods, we experiment on a variety of personnel rostering problem instances by
different methods. To find out the most efficient change strategies, we use different
combinations of change strategies for comparison. We also compare DFS, PFS and
PPS by the same instance for several times to find the suitable search strategy.

5.1 Experimental setup

In order to get a good performing DNN, we need a large number of instances.
We use the method from section 4.3.3 to generate 2 different types of personnel
rostering problem instance sets: I1 and I2. In I1 and I2, both of them start from
Monday, the horizon length of days is 14, T = {1, 2, . . . 14}. There is only 1 type
of shift, the set of shifts S = {1}. 8 employees are assigned to different shifts, E =
{1, 2, . . . , 8}. More detailed parameters setting are referred from Nurse Rostering
Benchmark Instances(Schedulingbenchmarks.org).

We train our DNN on the instance sets mentioned above. I1 is an instance set
including more than 4000 instances, which is used to train the DNN model initially.
To ensure the better performance of the DNN model, we generate I2 of 2000
accurate instances, which is used to retrain the DNN model. After completing the
training, we change one of the above specific problem parameters or add constraints
to make it a different problem scenario, and then try to use our method to find the
best solution to the new problem within a certain time limit. If the best solution
cannot be found within the limited time, the current best solution is used.

We implement our algorithm in Python 3.7 using keras 2.3.0 under tensor-
flow 2.0.0 as the backend for the implementation of the DNN. All networks are
trained using the Adam optimizer, which is based on a gradient descent(Kingma
& Ba, 2014). All experiments are conducted using Tier-2 Cluster of the Vlaams
Supercomputer Center.

5.2 Experiment 1: Comparison of change strategies

The correct change strategy in the search process of the selection tree is critical
to the good performance of the algorithm. Therefore, we propose three different
possible combinations of change strategies for DNNTS. We train the DNN model
on the I2 data set, and then we apply the DNN model to the tree search with dif-
ferent change strategies combinations to evaluate their impact on the performance
of the algorithm.

The combinations of change strategies we used for comparison is as follows:
Combination 1:
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– Strategy1: randomly change 2 employees’ shifts in one day.
– Strategy2: randomly change 2 days shifts for one same employee.
– Strategy3: randomly chose one shift which one of the employees who doesn’t

need to work, and change his status to work on that shift.

Combination 2:

– Strategy1: randomly change 2 employees’ shifts in one day.
– Strategy2: randomly change 2 employees’ shifts for 2 neighboring days.
– Strategy3: randomly change 2 days shifts for one same employee.

Combination 3:

– Strategy1: randomly change 2 employees’ shifts in one day.
– Strategy2: randomly change 2 employees’ shifts for 2 neighboring days.
– Strategy3: randomly change 2 days shifts for one same employee.

The optimization criterion is minimal penalty, the lower the better. A perfor-
mance measure is the average time to solve. Another performance measure are
the Figures showing declining process of the current optimal penalty. Since the
final solution found by our method does not prove to be optimal, we will use final
solution to represent the best solution we find in a complete algorithm process.

As can be seen from Table 1, whether the algorithm meets the stop criterion
after running for 60s, 600s, or the end of the algorithm, the performance of the
change strategies combination 1 is much better than the other two combinations
in all aspects. As shown in the Table 1, combination 1 can find the current known
best solution with the penalty value of 607 in less than 1 minute. In contrast,
although strategy 3 can find a relatively good solution, the total time of the entire
algorithm process is too long, nearly half an hour. Although combination 2 is
slightly better than combination 3 in the total time, its final solution penalty
value is worse than combination 3. As can be seen from Fig.9, whether it is based
on the depth of the tree search or time, the convergence speed of combination
1 is much faster than the other two combinations, and the search process will
not cost too much time on these feasible solutions with similar penalty value, it
almost directly comes to the final solution with the shortest path. However, the
other two combinations consume too much time in the local search, which causes
many platforms on the curve in Fig.9, so the convergence rate becomes slow.
This is closely related to the combination of changing strategies. The strategy
”Randomly change 2 employees’ shifts in one day.” can ensure that the elements
of the solution matrix are exchanged up and down, and the strategy ”Randomly
change 2 employees’ shifts for one same employee.” can ensure that the elements
of the solution matrix are exchanged left and right. The strategy ”Randomly chose
one shift which one of the employees who doesn’t need to work, and change his
status to work on that shift.” can control the number of different elements in the
matrix. These three strategies can guarantee that the matrix changes covers every
possibility.

5.3 Comparison of search strategies

We need to compare three search strategies mentioned above in order to find
the best one, namely DFS, PFS and PPS. To ensure a fair comparison among
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Table 1 Comparison of different obfuscations in terms of their transformation capabilities

Combination
Convergence Speed Final result
60s 600s Final penalty Time(s)

1 607 607 607 43.41
2 1015 812 812 680.78
3 1015 708 708 1363.25

(a) Penalty with the depth of the tree (b) Penalty with the time

Fig. 9 The image of the convergence speed

strategies, we use the DNN model trained on the I2 dataset for each strategy to
evaluate the performance. Table 2 also provides the current best solution found
in a specific period of time(60s and 600s), the final solution, and the time of the
three search strategies.

As can be seen from Table 2, PFS and PPS can find the final solution with the
same penalty value, but PFS takes a little bit longer - just 13s. However, whether
the current best solution in 60s , 600s or the final solution in the whole process,
the performance of DFS is far inferior to PFS and PPS. It can be seen from Table
2 that the introduction of the DNN model to the branch selection in the process of
ordinary tree search has a certain effect. It can be further seen from Fig.10 that,
regardless of the depth or time of the search tree, DFS will encounter the problem
that the penalty value convergence is too slow during the search process, which is
actually caused by not selecting the correct branch, thus wasting more time. From
the final result, the final solution of DFS stagnates at a penalty value of 707, while
the convergence rate and the final solution of PPS and PFS are far superior to
DFS. The final result further proves that the method of combing the DNN model
with the tree search really works. Compared to PFS, the penalty value of PPS
will converge slightly faster than PFS. This is why we proposed PPS. By giving
Penalty a certain weight when selecting branches, it helps the search tree reach to
the root as fast as possible in the beginning of the search, and the fast approach
to the final solution also plays the guiding role of the DNN model.

Compared with ordinary search methods, because of the guidance of the DNN
model, the number of nodes searched by DNNTS is many orders of magnitude
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Table 2 Comparison of three search strategies

Search Strategy
Convergence Speed Final result
60s 600s Final penalty Time(s)

DFS 1015 908 707 3453.47
PFS 607 607 607 43.41
PPS 607 607 607 30.54

less. Usually the best results can be achieved in twenty selections, which clearly
shows that the DNN model is very effective.

(a) Penalty with the depth of the tree (b) Penalty with the time

Fig. 10 The image of the convergence speed

5.4 Experiment 3: Evaluation of methods

We compare the DNNTS and Roster viewer (Curtois & Qu, 2014), which has
two built-in solutions-VDS (3.11) and Branch and Price (B&P). We compare
these three methods on eight Groups with different problem types and report
the performance of each method. Group 1 and Group 2 are designed by our-
selves, and Group 3-11 are the instances from Nurse Rostering Benchmark In-
stances(Schedulingbenchmarks.org). Method VDS requires a limit on the maxi-
mum time. So we first run DNNTS, and set the maximum time of VDS equal to
the time costed by DNNTS. So that we can better observe the performance of the
different methods during the same time. The parameters of different group are
shown in Table 3.

The results are shown in Table 4. For small instances (Group 1 to Group 9),
B&P can find the best solution in a really short time, but for big instances(Group
10 and Group 11), it meets some problem. This is the exponential explosion prob-
lem often encountered in B&P method. Since there is a DNN model to do branch
decision, our DNNTS method consumes acceptable time in all groups. In terms
of the quality of the final solution, The performance of VDS isn’t good, probably
because it is an traversal algorithm, so maybe it needs more time to get better
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Table 3 Parameters of each Group

Group Weeks Employees Shift types Hard constraints Best known Solution

1 2 8 1 2 /
2 2 8 1 3 /
3 2 8 1 10 607
4 2 14 2 10 828
5 2 20 3 10 1001
6 4 10 2 10 1716
7 4 16 2 10 1143
8 4 18 3 10 1950
9 4 20 3 10 1056
10 4 30 4 10 1300
11 6 45 6 10 3833

results. Some penalty value of the final solution found by DNNTS are the same
as the best known solutions, others are near to the best known solutions, which
proves our method can be applied to the public instance set and propagated.
The result shows that DNNTS can compete with the latest methods in terms of
solution time and solution quality. And the result also illustrates the positive sig-
nificance of introducing the DNN model into the tree search, and also emphasizes
the importance of adequate training of the DNN model.

Table 4 Comparison to other methods on the test set

Group Best Known Penalty
Final Penalty Time(s)
DNNTS B&P VDS DNNTS B&P VDS

1 / 0 0 0 1.98 0 2
2 / 1 1 1 1.60 0 2
3 607 607 607 607 43.42 0.27 44
4 828 828 828 937 205.47 0.13 206
5 1001 1001 1001 1103 170.77 0.45 171
6 1716 1718 1716 1721 283.9 1.5 284
7 1143 1143 1160 1636 78.28 25.61 79
8 1950 1952 1952 2340 1800.78 10.45 1801
9 1056 1057 1058 1278 1589.32 93.73 1590
10 1300 1317 1308 2643 560.93 11831.06 561
11 3827 4378 / 5514 2660.91 Out of memory 2661

6 Conclusion and future work

We propose a method aim to the personnel rostering problem combining DNN
and tree search, which uses deep learning to assist branch selection. We prove that
compared with the examples in the literature, DNNTS finds good solutions equal
or near to the best known solutions, which are able to compare with the rostering
problem solver. DNNTS can solve problems with very little user input. It mainly
relies on the best known solution provided to learn how to build a solution by
itself. There are many ways for DNNTS to work in the future. If we can model
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other optimization problem as a standard model with the following characteristics,
applying DNNTS to other similar optimization problems is a possible choice.

– The solutions of the problems can be regarded as m×n matrices, so that they
can be transferred as the input of the neural network.

– The best solution can be found by some changes from the initial solution, so
that some child nodes can be derived at each parent node.

– The problems have some soft constraints, so that we can use the penalty to set
the lower bound of the tree search.

Other areas of future work include the use of reinforcement learning and others
to further improve efficiency. We suggest that by using a faster programming
language or using a GPU instead of a neural network’s CPU, the runtime of the
results we obtained may be improved. In addition, many changes can be made to
DNNTS, such as reconfiguring the DNN network structure or adjusting branch
pruning functions. These changes can improve performance in terms of runtime
and solution quality.
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Todorović, N., Petrović, S., & Teodorović, D. (2013). Bee colony optimization for
nurse rostering. IEEE Transactions on Systems Man & Cybernetics: Systems,

349

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



Deep Neural Networked Assisted Tree Search for the Personnel Rostering Problem 25

43 , 467–473.
Valouxis, C., Gogos, C., Goulas, G., Alefragis, P., & Housos, E. (2012). A system-

atic two phase approach for the nurse rostering problem. European Journal of
Operational Research, 219 , 425–433. doi:10.1016/j.ejor.2011.12.042.

Vanden Berghe, G., Beliën, J., Bruecker, P. D., Demeulemeester, E., & Boeck,
L. D. (2013). Personnel scheduling: A literature review. European Journal of
Operational Research, 226 , 367–385. doi:10.1016/j.ejor.2012.11.029.

Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. In Advances in
neural information processing systems (pp. 2692–2700).

350

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



Plant shut-down maintenance workforce allocation and

job scheduling

Hesham K. Alfares[0000-0003-4040-2787]

King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
alfares@kfupm.edu.sa

Abstract. An important and challenging real-life problem is considered, involv-
ing workforce allocation and job scheduling for shut-down maintenance in a large
oil refinery. A limited number of maintenance employees must be divided into
several teams that work in parallel on different maintenance tasks. Since shut-
down is costly, the aim is to minimize the total shut-down period, i.e., the time
to complete all the maintenance tasks. Different team sizes are possible, and the
size of the given team determines the speed of finishing the assigned maintenance
tasks. Constraints include the total workforce size, the allowed team sizes, job
availability (arrival) times, and precedence relations between different jobs. This
problem can be considered as a resource-constrained parallel-machine schedul-
ing problem, in which the objective is to minimize the makespan, and both the
number and the speeds of the individual machines are decision variables. Opti-
mization models and effective heuristic algorithms are developed for this NP-
hard scheduling problem.

Keywords: Maintenance scheduling, parallel machine scheduling, makespan,
resource-constrained scheduling

1 Introduction

The real-life problem considered in this paper is the optimum scheduling of shut-down
maintenance activities in a large oil refinery. Shut-down maintenance is performed by
a limited number of skilled workers supplied by a contractor at a high daily rate. These
workers have to be divided into several work teams that work in parallel on different
maintenance tasks. The number of workers in each team, which is subject to certain
restrictions, determines the speed of completing each maintenance task assigned to the
team. Models are formulated to determine the number of work teams, the size of each
team, the jobs assigned to each team, and the sequence of processing these jobs. The
objective is to minimize the time needed to complete all jobs, i.e., the shut-down dura-
tion, in order to reduce the cost of lost revenue and the cost of contract workers.

The problem analyzed in this paper can be considered as a resource-constrained par-
allel-machine scheduling problem, in which the limited resource is the maintenance
workforce, and the parallel machines are the different maintenance teams. In machine
scheduling terms, the objective is to minimize the makespan, and both the number and
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the speeds of the individual machines are decision variables. The proposed machine
scheduling problem involves resource constraints, precedence constraints, a variable
number of machines, and variable machine speeds. This is a unique problem that has
not been considered previously in scientific literature. It is also a challenging NP-hard
scheduling problem, which is very hard to solve to optimality. An integer programming
model is formulated to solve smaller instances of this problem. In order to solve larger
real-life instances, an effective heuristic solution algorithm is developed and evaluated
using a large number of test problems.

Remaining sections of this paper are organized as follows. Relevant recent literature
is reviewed in section 2. The integer programming model is formulated in section 3.
The heuristic solution is described in section 4. Finally, conclusions and suggestions
are provided in section 5.

2 Relevant literature

Three aspects of the problem have been separately considered in prior literature: plant
maintenance workforce scheduling, plant shut-down maintenance scheduling, and re-
source-constrained parallel machine scheduling. Relevant recent literature on these as-
pects is reviewed below.

Several integer programming models have been proposed for plant maintenance
workforce scheduling. Alfares and Emovon (2007) use integer programming to com-
pare alternative maintenance work schedules at a power station. The objective is to
satisfy workload requirements with minimum cost and highest efficiency. Safaei et al.
(2011) present a bi-objective mixed-integer programming model for workforce-con-
strained maintenance scheduling in a steel plant. The first objective is to minimize the
total workforce requirements, and the second is to maximize the equipment availability.
Koochaki et al. (2013) analyze the impact on maintenance workforce scheduling of two
plant maintenance policies, namely condition-based maintenance and age-based
maintenance. Leite and Vellasco (2020) adapt the particle swarm optimization (PSO)
algorithm to schedule offshore maintenance activities and staff in order to maximize
profitability.

Plant shut-down maintenance scheduling has been well studied in the literature. Cas-
tro et al. (2014) analyze long-term shut-down maintenance scheduling in a power plant
with time restrictions on labor availability, demand variability, and price variability. A
generalized disjunctive programming model is developed to maximize the revenue by
maximizing labor utilization and minimizing shut-downs during high‐price seasons. 
Adhikary et al. (2016) construct a nonlinear optimization model for preventive mainte-
nance in continuous operating systems with two objectives: maximizing system avail-
ability and minimizing maintenance cost. To solve the model, a dual-objective genetic
algorithm is developed and applied to optimize preventive maintenance in a real power
plant.

The resource-constrained parallel machine scheduling problem, which is analogous
to the maintenance scheduling problem analyzed in this paper, has received considera-
ble attention in the literature. Edis et al. (2013) review and classify the literature on
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parallel machine scheduling where additional resources are required, such as operators,
tools, fixtures, and robots. Fanjul-Peyro et al. (2017) propose two integer programming
models to minimize makespan for parallel machine scheduling with limited resources.
Assuming the amounts of required resources depend on the job-machine assignment,
three heuristics are developed to solve the two optimization models. Zheng and Wang
(2018) analyze a resource-constrained parallel machine scheduling problem, aiming to
minimize both the makespan and the total carbon emission. A multi-objective fruit fly
optimization algorithm is used to determine the optimum job schedule and the speed of
each machine.

Compared to previous work, this paper presents a new scheduling problem. If con-
sidered as a machine scheduling problem, it would have a variable number of parallel
machines, variable machine speeds, resource-dependent job processing times, resource
limitations, and precedence relations. As far as the author knows, this is the first paper
in which the number of machines is itself a decision variable.

3 Model description

In the problem under study, a limited number of maintenance employees are available
to perform a given set of maintenance jobs. These employees must be divided into sev-
eral groups (work teams) that work in parallel on different subsets of the maintenance
jobs, in order to finish all jobs in the minimum time duration. Therefore, the proposed
maintenance scheduling problem involves employee team formation, job-team assign-
ment, and job sequencing for each team. The aim is to minimize the makespan (time
interval) needed to complete the shut-down maintenance. The binary integer program-
ming model presented below is formulated to represent and optimally solve this prob-
lem.

3.1 Assumptions

The assumptions used to define the problem and construct the optimization model are
listed below.

1. The maintenance workforce is homogeneous and composed of multi-skilled employ-
ees who are equally qualified to work on any maintenance job.

2. The size (number of employees) of any employee group (team) is limited to a given
set of feasible values. Usually, two team sizes are specified: a standard (smaller)
team size, and a rush (larger) team size.

3. The processing time of each job depends on the size of the group assigned to do the
job. Usually, two processing time durations are possible for each job: a normal
(longer) time by the smaller team size, and a crash (shorter) time by the larger team
size.

4. Precedence relations exist between certain pairs of jobs, where a job cannot be
started before the completion of its predecessor job(s).

5. A job cannot be started before its arrival time. Some jobs have an arrival delay period
after which they become available for maintenance.
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3.2 Decision variables

C = makespan, i.e., completion time of the last maintenance job
N = number of groups (work teams)

=

g = 1,…, G

=

g = 1,…, G, k = 1,…, K

=

j = 1,…, J, g = 1,…, G, k = 1,…, K, t = 1,…, T

3.3 Structure of the integer programming model

A pure-integer linear programming (ILP) model is developed to represent and optimally
solve the problem. is linear, All the decision variables are integer, and all of them except
C and N are binary. The objective of the model is to minimize the makespan C , i.e.,
the total shut-down duration, subject to the following constraints:

1. Unique job scheduling constraints: ensure that each job j is assigned to one group g
of one size sk and has one start time t. Job-to-group and employee-to-group assign-
ments are fixed during the shut-down maintenance period.

2. Unique job assignment constraints: assure that, for each work group, no more than
one job is assigned in each time period.

3. Precedence constraints: guarantee that each job can start only after the completion
time of all its predecessors.

4. Makespan constraints: set the makespan to be greater than or equal to the finish time
of all jobs.

5. Logical constraints: relate the decision variables Xjgkt and Ygt, by assigning jobs only
to the active groups with the correct size.

6. Workforce constraint: ensure that the sum of group sizes does not exceed the avail-
able workforce size W.

7. Unique team size constraints: to guarantee that only one size is selected for each
active group.

8. Number of teams’ constraint: to equate the number of groups to the sum of active
groups.

4 Heuristic solution method

Obtaining the optimum solution of the ILP model defined above is very difficult, espe-
cially for large problem sizes. The number of decision variables, especially Xjgkt, grows
very rapidly with increasing problem size. To effectively solve larger sizes of this work-
force allocation and job scheduling problem, the unique problem structure was utilized
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to develop an efficient two-stage heuristic. First, ignoring job sequencing and prece-
dence constraints, a simplified ILP model is used to assign jobs to teams. Next, jobs are
sequenced for their respective assigned teams to incorporate arrival and precedence
constraints.

In order to assess the real-world effectiveness of proposed heuristic, its performance
has been verified assuming different problem characteristics. Therefore, to compare the
heuristic solution with the optimum ILP solution, computational experiments were car-
ried out using a wide variety of randomly generated test problems. The heuristic method
has been shown to produce optimal solutions for all test problems significantly faster
than the ILP model.

5 Conclusions

This paper presented a model for scheduling employees and tasks in plant shut-down
maintenance. Given a limited number of maintenance employees and a set of mainte-
nance tasks, the employees are divided into several teams of specific sizes such that
each team is responsible for a given subset of the tasks. This allows several maintenance
activities to be processed simultaneously (in parallel) by the different workforce teams.
Naturally, the speed of processing each task depends on the size of the maintenance
team assigned to perform it. Considering the work teams as machines, this problem can
be presented as a resource-constrained parallel-machine scheduling model. As a paral-
lel machine scheduling problem, this model is unique because both the number and the
capacities of the machines are decision variables. The model has been successfully ap-
plied in a real-life shut-down maintenance scheduling problem in a large oil refinery.
A heuristic algorithm is developed and shown to efficiently solve this scheduling prob-
lem.
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International Timetabling Competition 2019: A Mixed
Integer Programming Approach for Solving University
Timetabling Problems

Efstratios Rappos · Eric �iémard · Stephan
Robert · Jean-François Hêche

 

Abstract �is summary article presents the mathematical programming approach used
to solve and optimize the problem instances of the International Timetabling Competition
2019. �e optimization problem was modeled as a mixed integer program which was solved
using traditional branch-and-cut methods. Several innovative elements enabled to achieve
good performance, such as the precalculation of several characteristics of the instances, the
aggregation of constraints and the e�cient use of auxiliary variables in the formulation.
�e computational implementation consisted of a �rst stage algorithm to obtain a feasible
solution and an iterative local search metaheuristic to improve the quality of the resulting
timetable. �e solutions produced using this algorithm resulted in a ranking of second
place in the competition.

Keywords ITC 2019 · timetabling problems · integer programming · combinatorial
optimization

1 Introduction

�is extended abstract describes the method used to solve the timetabling problems of the
2019 International Timetabling Competition [1]. Overall, we were able to solve 29 out of
the 30 problem instances; the instance “agh-fal17” was not solved in time for the end of
the competition. �e mathematical modeling approach formulated the problem as a lin-
ear mixed integer program (MIP) and used techniques from large neighborhood search
[2],[3],[4] and metaheuristics [5] to improve the solution quality.

2 Model formulation

�e MIP formulation uses four sets of binary 0-1 variables, x, y, z and Z , representing the
class times, class rooms, student-class allocation and student-course con�guration alloca-
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tion respectively. �e indices of these variables are described in Table 1 and their values
uniquely represent a solution to a timetabling problem.

Variable Value
xc,t 1 if the class c takes place at time t, 0 otherwise
yc,r 1 if the class c takes place in room r, 0 otherwise
zs,c 1 if the student s is assigned to the class c, 0 otherwise
Zs,f 1 if the student s follows the course con�guration f , 0 otherwise

Table 1 Variables used in the formulation

�e binary variables are linked by a set of linear constraints representing the solution
requirements of the timetabling problems of the 2019 International Timetabling Competi-
tion. �e hard constraints must be satis�ed by any feasible solution and are summarized
in Table 2.

Constraint Meaning
C-1 Every class must be assigned a time
C-2 Every class must be assigned a room, where applicable
C-3 Every student must a�end exactly one class from each subpart of the selected

course con�guration for each course that he must a�end
C-4 For two classes with a parent-child relationship, if a class is assigned to a student

then the parent class must also be assigned
C-5 Every student must be assigned a course con�guration for every course that he follows
C-6 �e capacity of each class in terms of the number of students must be satis�ed
C-7 A room cannot be used when it is unavailable
C-8 Two classes cannot take place at the same time in the same room
C-9 Any hard distribution constraints must be satis�ed

Table 2 Constraints used in the formulation

�e �rst seven constraints are straightforward to formulate as linear inequalities using
the above decision variables. For example, C-1 is represented by the formula

∑
t xc,t = 1

for each class c; C-3 is expressed as
∑

c zs,c = Zs,f for each student s, where the sum is
over all classes c of one subpart of the course con�guration f , and C-5 is

∑
f Zs,f = 1 for

every student s. �e last two constraints C-8 and C-9 are modeled as inequalities of the
form:

xc1,t1 + yc1,r1 + xc2,t2 + yc2,r2 ≤ 3 (1)

for every combination of class times and rooms which leads to a violated constraint. �e
inequality (1) prevents all four terms from taking the value 1 and therefore disallows this
speci�c combination. �ere are however four types of hard constraints (namely, the special
MaxDays, MaxDayload, MaxBreaks and MaxBlock constraints) that cannot be represented
by inequalities of the form (1). �is is because these constraints cannot be expressed in
the form “for each pair of classes”; for these constraints an additional step is taken. Each
time a potential new solution is found we need to check that these special constraints are
satis�ed, and if they are not, reject the solution by adding the appropriate inequalities,
similar to (1) but with more terms, that forbid this combination of variables.

�e objective function consists of four linear terms which correspond to the four so-
lution quality criteria of the competition [1], namely the class time and room assignment
costs, so� distribution constraint costs and student con�icts. �e �rst two terms are simply
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the weighted sum of the x and y variables. For the costs associated with the so� distribu-
tion constraints, an auxiliary variable is introduced in (1) which speci�es if the constraint
is satis�ed or not, and the sum of these variables is used as the third term of the objective
function. A similar method is used for the student con�icts. An auxiliary variable is intro-
duced for every student and pair of classes he may follow, specifying whether a con�ict
exists or not. However, as the number of potential student con�icts can be very large, we
aggregate the penalties associated with every pair of classes into one equation (for all stu-
dents) by introducing an indicator variable which speci�es whether a student follows both
classes or not. Note that we are able to take into account both types of student con�ict:
where two classes overlap and when the travel time between the classes is insu�cient.

Several innovative techniques are used to deal with the very large number of con-
straints of the above formulation, which makes it possible to solve the competition in-
stances in a reasonable amount of time. �e e�ciency optimizations include:

– Extensive use of precalculated problem characteristics to save time between runs, for
example the minimum and maximum gap and travel distances between classes

– Four types of logical checks to eliminate variables whose value can be deduced
– Removal of constraints that are always satis�ed
– Reduction of the problem size by constraint aggregation

As an example of a logical check, we examine the existence of two classes which must take
place in the same room. If one of these classes has its time assignment �xed, we can then
exclude those time assignments of the second class which produce a con�ict.

�e computational implementation was done in Java using the commercial so�ware
CPLEX and Gurobi as the mixed integer programming solvers. �e solution strategy is
outlined in Agorithm 1 and consisted of two stages: the �rst stage focused at obtaining a
feasible solution via an incremental addition of the hard constraints, whereas the second
stage is a metaheuristic which combines iterative local search with mixed integer program-
ming and aims to improve the solution quality.

�e �rst stage performs a progressive addition of constraints into the model using
slack variables to account for any violated constraints. Once a feasible solution is obtained
the second stage iteratively improves the solution quality. In the end, the algorithm will
produce be�er and be�er solutions until the optimization is stopped for practical reasons.

In both stages a number of decision variables is �xed to their last-solution values to
reduce the size of the MIP. Several strategies of �xing the variables were developed and
implemented sequentially, such as �xing only the x or y variables, �xing all variables within
a class or �xing all classes within a so� distribution constraint. �e strategy for �xing the
variables is very important; the aim is to �nd a balance between �xing too many variables,
which has a short running time but would produce a small improvement in the quality,
and �xing too few variables which allows a wider exploration of the solution space at the
expense of increased computational time.

�e overall time taken for the �rst stage of the algorithm ranged from around 5 minutes
to 21 hours (5 to 1850 optimization runs), except for the instance “pu-proj-fal19” which re-
quired around 260 hours to produce the �rst feasible solution. �e amount of time needed
for the �rst stage depended not only on the size of the problem but also the size of the
solution space: small problems with few feasible timetable con�gurations can be hard to
solve. �e second stage took between 1 and 240 hours (50 to 5000 runs). Since the second
stage is a local improvement metaheuristic, the decision to stop the optimization was par-
tially based on practical considerations and, outside the competition, one could in theory
continue these runs to further improve the solution quality.
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Algorithm 1 A two-stage algorithm to solve and optimize the timetabling instances
{�e �rst stage to obtain a feasible solution}
Solve a minimal MIP containing constraints C-1, C-2, C-5
while Some constraint is violated do

Read the solution values of the last MIP solved
Fix randomly some decision variables to their solution values (0 or 1)
Create a MIP with all constraints C-1 to C-9 satis�ed by the current solution
Add to the MIP all the constraints C-1 to C-9 which are violated, using slack variables
Optimize the MIP: minimize the sum of the slack variables

end while
return feasible solution
{�e second stage to improve the solution quality}

Require: initial feasible solution
while time limit not reached do

Read the solution values of the last MIP solved
Fix some decision variables to their solution values (0 or 1)
Create a MIP containing all the hard constraints
Add variables and constraints related to student con�icts
Optimize the MIP: minimize the four cost terms

end while
return solution

3 Conclusions and future work

�is extended abstract presented a mixed integer programming approach for solving the
timetabling problems of the International Timetabling Competition 2019, which produced
a ranking of second place in this competition. Although the problem size for a typical
timetable was very large to be solved exactly using traditional mixed integer program-
ming tools, several improvements signi�cantly reduced the size to manageable levels. Once
a feasible solution was obtained, the use of mixed integer programming for the local search
optimization stage proved to be very powerful in improving the quality of the solutions
very quickly. A detailed article containing the detailed mathematical formulation, compu-
tational implementation, comprehensive results and in-depth analysis is in production and
will appear in due course.
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1 Introduction

In this paper we present a simulated annealing algorithm for solving the
problem of University Course Timetabling as formulated in the International
Timetabling Competition (ITC) 2019 [6].

The presented algorithm is based on a modified version of simulated an-
nealing. It utilizes a suitable cooling function [5] and an adaptive evaluation
function [7], both of which have proven useful for normalizing the varying
characteristics of problem instances.

The algorithm searches both feasible and infeasible regions of the solution
space, where the latter is dealt with by using a combination of incremental
penalization and narrowed search on specific hard constraints.

The solver based on this algorithm has placed among the five finalists of
the International Timetabling Competition 2019.

2 Solution approach

Solution representation A given solution is always modeled to be complete.
This means that variables are always assigned to some value, even if their
configuration evaluates to an invalid solution. A solution is the list of all
variables Vi (where i = 1..n) and their values. A sample representation of

E. Gashi
University of Prishtina
E-mail: edon.gashi@uni-pr.edu

� K. Sylejmani
University of Prishtina
E-mail: kadri.sylejmani@uni-pr.edu

A. Ymeri
University of Prishtina
E-mail: adrian.ymeri@studentet.uni-pr.edu

361

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



2 Edon Gashi et al.

a given solution is S = {V1, V2, V3, ..., Vi, ..., Vn}, where the assignment of vari-
able Vi in a solution S is modeled to have three components CT - Class
Time, CR-Class Room or SE- Student Enrollment (i.e. V = {CT,CR, SE}),
where CT = {Class ID, Time slot}, CR = {Class ID, Room Index}, and
SE = {(Student ID, Course Index ), Class Chain Index}. Variable n repre-
sents the total number of all course configurations and the Class Chain Index
represents a particular assignment combination of a given course.

We maintain three separate penalties to determine the state of the solution:
hard penalty, class overflows, and soft penalty. Soft penalty is calculated using
the identical rules described by [6], and hard penalty is calculated as follows:

– A conflict between a pair of classes gives 1 hard penalty point.
– A time assignment conflicting with a room’s unavailable schedule gives 1

hard penalty point.
– An unsatisfied required constraint gives hard penalty points equal to the

soft penalty the constraint would give if it were not required.

Class overflows penalty is the sum of all over-enrollments on classes. We
maintain this as a separate penalty because it is not as constrained as hard
penalty and is easier to satisfy.

Neighborhood function A mutation is an operation that changes a single vari-
able. We hold two lists of possible mutations: feasible mutations and infeasible
mutations. Infeasible mutations are applied on solutions with non-zero hard
penalty, and they do not contain operations on students.

In concrete terms, a mutation is a single operation that either changes: (1)
the schedule of a class, (2) the room of a class, or (3) the class configuration
of a student attending a particular course.

The neighborhood operator has a 50% chance of performing a single mu-
tation (selected randomly from the possible mutations described above), and
a 50% chance of performing up to a maximum of three mutations, where the
number of mutations is selected at random with uniform probability.

Initial solution The initial solution S is deterministically assigned by giving
each variable an iterating natural number in the domain from 1 to 3, which
map the set of possible variable values V = {CT,CR, SE}, respectively. If
the attempted number exceeds the domain size, then the last number in the
domain is taken.

Cooling function The cooling schedule in Equation (1) is based on [5], where
the value of β has been assigned empirically. Because of the varying amount
of time it takes to solve different instances, a fixed restart temperature is used
once the hard penalty hits 0. In Equation (1), variable t represents the temper-
ature in the current iteration, whereas variable t’ represents the temperature
for the next iteration.

t′ =
t

1 + βt
(1)
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Simulated Annealing with Penalization for University Course Timetabling 3

Evaluation function There are a few types of evaluation functions, depending
on the phase and context. In equations (2) and (3), ph stands for hard penalty,
ps for soft penalty, and pc for class overflows penalty, whereas c1 and c2 are
empirically defined constants. The function round2 means rounding to 2 digits
after the decimal separator. The worst soft penalty of a problem is calculated
statically by taking the worst case penalty of all constraints and assignments.

searchPenalty(s) =

{
c1ph + round2(c2pc + normalize(ps)), ph > 0

c2pc + normalize(ps), ph = 0
(2)

normalize(ps) =
ps

worst soft penalty of problem
(3)

The simulated annealing acceptance condition compares the difference be-
tween values of fstun [7], which is shown in Equation (4). The constant γ is
defined empirically, whereas f0 denotes the quality of the best solution. Thus,
the energy difference ∆E in simulated annealing is defined in Equation (5),
where s and s′ represent the current and next solution, respectively.

fstun(x) = 1− exp [−γ(f(x)− f0)] (4)

∆E(s′, s) = fstun (searchPenalty(s
′))− fstun (searchPenalty(s)) (5)

Particular class-time and class-room combinations can become penalized
over time. The modifiedPenalty function defined in Equation (6) is expressed
as the search penalty combined with the total sum of all penalties of present
features in a solution s.

modifiedPenalty(s, penalties) = searchPenalty(s) +

featuress∑
x

penaltiesx (6)

Penalization is performed after local timeouts for each feature by incre-
menting a constant multiplied by the hard penalty contribution of that par-
ticular feature.

Sometimes hard constraints persist for many timeouts. In such cases, we
pivot the solution by performing hill-climbing with a different penalization
function, as shown in Equation (7). A limited subset of persistent constraints
(focus) is taken and random walks are performed until the solution has reached
a sufficiently different shape.

focusedPenalty(s, focus) = fstun (searchPenalty(s)) +

focus∑
x

penalty(x) (7)

Algorithms 1 and 2 provide a simplified overview of the solver.
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Algorithm 1 Simulated annealing with penalization
1: procedure Solve(initial solution)
2: t← initial temperature
3: penalties← initial penalties
4: best← initial solution
5: local best←∞
6: local timeout← 0
7: current← best
8: while stopping criteria not met do
9: t← cool(t)
10: candidate← mutate(current)
11: if candidate better than best then
12: best← candidate
13: end if
14: if searchPenalty(candidate) < local best then
15: local best← searchPenalty(candidate)
16: local timeout← 0
17: else
18: local timeout← local timeout+ 1
19: end if
20: if modifiedPenalty(candidate) < modifiedPenalty(current) then
21: current← candidate
22: else if accept(current, candidate, t) then
23: current← candidate
24: end if
25: if local timeout > limit then
26: local best←∞
27: local timeout← 0
28: t← restart temperature
29: persistent constraints← {constraints with age > age limit}
30: if infeasible(current) ∧ persistent constraints ̸= ∅ then
31: focused constraints← oldest 3 persistent constraints
32: current← ConstraintSearch(current, focused constraints)
33: else
34: penalties← scale(penalties)
35: end if
36: end if
37: end while
38: return best
39: end procedure

Algorithm 2 Focused search on particular constraints
1: procedure ConstraintSearch(solution, focused constraints)
2: timeout← 0
3: while timeout < timeout limit do
4: candidate← RandomWalk(solution, distance)
5: if focusedPenalty(candidate) < focusedPenalty(solution) then
6: solution← candidate
7: timeout← 0
8: else
9: timeout← timeout+ 1
10: end if
11: end while
12: return solution
13: end procedure
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Simulated Annealing with Penalization for University Course Timetabling 5

3 Results and conclusion

The presented algorithm managed to solve all instances of the ITC2019 in
time limit of maximum 24 hours. It has won first place in both 1st and 2nd
milestone of the competition [6], and has placed third in the final round. In
addition, our solver has won the prize as the best approach in the open source
category.

In Table 1, we present the comparison results of our approach against the
results of four of the other finalists, namely Holem et al.[3], Rappos et al.
[1], Er-rahaimini [2] and Lemos et al. [4]. In addition, we have also included
the results presented by Müller (one of the organizers of the competition),
who, after the end of the competition, has published the results obtained by
the solver that is used by UniTime timetabling system. The presented results
of our approach (tagged as Edon et al.) are the best results that have been
achieved when running the solver for 24 hours for each instance. The results
in Table 1 show that our approach is outperformed, in all of the instances,
by the the approaches of Holem et al.[3] and Müller, whereas Rappos et al.[1]
performs better in 23 (out of 30) instances. Our approach performs better than
the approach of Rappos et al.[1] in seven instances, better than the approach
Er-rahaimini [2] in 19 instances, and better than the approach of Lemos et
al. [4] in 21 instances. In addition, the solutions of our solver have a gap
of less than 15% from the best known solutions in 5 (out of 30) instances.
Furthermore, the average gap from the best known solution for early, middle
and late chunks of instances are about 80%, 90% and 230%, respectively.

Overall, this model shows that it can solve complex and large instances with
distinct features in terms of number of courses, number of students, number
of rooms, as well as other distribution and special constraints.
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6 Edon Gashi et al.

Table 1 Presentation of the gap (in percentage) from the best known results

Instance name Best Holm et al.(%) Müller (%) Rappos et al.(%) Gashi et al.(%) Er-rhaimini(%) Lemos et al.(%)

agh-fis-spr17 3039 0 12.2 49.9 123.7 87.8 N/A
agh-ggis-spr17 34285 0 6.2 6.7 127.3 65.5 N/A
bet-fal17 289965 0 0.2 1.8 3.1 N/A 2.1
iku-fal17 18968 0 24.5 41.5 166.8 134.5 57.7
mary-spr17 14910 0 1.4 0.7 6.5 11.9 N/A
muni-fi-spr16 3756 0 7.5 2.3 33.2 38.6 N/A
muni-fsps-spr17 868 0 1.2 1.7 123.2 376.3 N/A
muni-pdf-spr16c 33724 0 18.3 11.1 72.5 130 59.5
pu-llr-spr17 10038 0 7.5 33.3 68.1 91.5 N/A
tg-fal17 4215 0 0 0 90.8 74.5 60.7
agh-ggos-spr17 2864 0 19.3 120.6 225.6 169.7 2684.3
agh-h-spr17 22175 0.05 0 17.9 13.1 16.1 N/A
lums-spr18 95 0 3.1 20 12.6 87.3 475.7
muni-fi-spr17 3825 0 3.6 12.1 22.6 42 372.6
muni-fsps-spr17c 2596 0 16 27.2 255 806 23714.2
muni-pdf-spr16 17208 0 16.8 41.3 132.8 125.6 1707.2
nbi-spr18 18014 0 3.7 5.7 47.2 68.2 177.1
pu-d5-spr17 15204 4.6 0 23.7 27.8 33.1 3.4
pu-proj-fal19 117425 25.7 0 377.9 102.6 49.9 9.32
yach-fal17 1074 15.3 0 71.6 60.8 196.1 N/A
agh-fal17 118038 24.5 0 N/A 20.8 55.9 29.8
bet-spr18 348524 0 0.2 3.3 1.5 3.4 7
iku-spr18 25868 0 39.1 41.9 76 232.3 174.2
lums-fal17 349 0 5.7 10.6 132.9 39.2 59.8
mary-fal18 4422 0 8.8 27.5 897.2 62.8 57
muni-fi-fal17 2999 0 8.2 26.5 38.7 57.1 60.7
muni-fspsx-fal17 10123 68.3 0 226 900.8 314.2 933.5
muni-pdfx-fal17 98373 13.7 0 53.9 53.9 61.8 95.1
pu-d9-fal19 39942 0 11.9 235.5 19 107.2 76.3
tg-spr18 12704 0 14.5 1.2 151.1 25.8 55
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Metaheuristic for the Personalized Course Sequence
Recommendation Problem

Aldy Gunawan · Audrey Tedja Widjaja · Roy
Ka-Wei Lee · Ee-Peng Lim

1 Introduction

Scheduling problems have been studied in various domains, such as machine schedul-
ing, staff scheduling, transportation and sport scheduling. In this paper, we focus on
a novel scheduling problem in the university context, namely personalized course se-
quence recommendation. Many universities today offer courses in such a way that
gives students more flexibility in selecting courses. The universities offer not only
compulsory courses but also elective courses that students can choose based on cer-
tain criteria, such as majors, specific programmes, specialized courses and elective
courses. Students are expected to take a required number of courses over a sequence
of terms. Among the factors considered by students when selecting courses, course
instructors, academic preference, relevance to career plan, and GPA (Grade Point
Average) are often the important ones. GPA is commonly used in a university in Sin-
gapore. This scoring system refers to a student’s academic performance and reflects
it as a number - the higher the better.

Recommender systems become an important research area since it helps users
to find the right content, products, or services [4]. Much of the research pertaining
to recommendation systems has been conducted in the domain of e-commerce. [5]
describe a recommender system as follows:
In a typical recommender system, people provide recommendations as inputs, which
the system then aggregates and directs to appropriate recipients. In some cases the
primary transformation is in the aggregation; in others the system’s value lies in its
ability to make good matches between the recommenders and those seeking recom-
mendations.
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Singapore Management University
E-mail: aldygunawan, audreyw, eplim@smu.edu.sg
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The application of the recommendation system in the education sector has re-
cently gained popularity. [6] summarized the main challenges of developing rec-
ommendation systems. Unlike most existing recommender systems, such as movies
or products to buy, course sequence recommender system generates sequences of
courses rather than a single item at a time. The complexity increases when the num-
ber of courses offered is large. Other factors such as considering the student’s perfor-
mance and the university (or school) requirements simultaneously further add chal-
lenges to the task. [2] developed an application, namely SUcheduler, for helping stu-
dents to plan their personalized course schedules by considering their preferences
over sections, instructors and other factors. The application utilizes a declarative
problem solving method based on Answer Set Programming, for generating course
schedule plans. However, the model assumes that students have selected their courses
before hand. Basically, it generates possible candidate solutions, using choice rules
and eliminates the candidates that violate predefined constraints.

In this paper, we develop a personalized course sequence recommendation system
with the main objective of generating a sequence of courses for all subsequent terms,
i.e. until the final graduation term. [6] highlighted that prolonged graduation time
may arise when courses are only taken myopically, without a clear plan. Therefore,
it is important to tailor course sequences to students since students may not have
the same learning path. We first analyze the past data that covers course titles and
grades from previous terms of undergraduate students from a university in Singapore.
From the data, we have learnt that students may achieve better GPA if they choose
suitable sets of courses and order them in certain sequences. Performance of a student
evolves in the process of learning [6]. Based on past courses taken by a student and
the course grades, we design an objective function that returns a course sequence
which maximizes the student’s GPA. We propose an algorithm based on simulated
annealing to determine the optimal course sequence. We conduct experiments based
on a real-world student record dataset to verify the efficacy of the proposed algorithm.

2 Personalized Course Sequence Recommendation Problem

For a particular degree with a given set of courses C = {1,2, ...|C|}, Cc and Ce are
defined as sets of compulsory and non-compulsory (elective) courses respectively
(Cc,Ce ⊂ C). Each student must complete Cc and take a subset of Ce in order to
fulfill the graduation requirements. Assume that a student has completed the first T
terms. The set of courses taken in term t is denoted as C′t(t ∈ T ), and the actual grade
received for the course i in term t is denoted as Git(t ∈ T, i ∈ C′t). In our problem,
there are five possible grades for courses G = {A,B,C,D,F}. They are converted to
scores of 4, 3, ..., 0 respectively. Every student can take a maximum of Cmax courses
in each term, and is expected to complete Ctotal courses for graduation.

The main objective of the course sequence recommendation is to recommend a
sequence of courses to a student, based on his first T terms information, such that
all of the graduation requirements and prerequisites of courses are satisfied, and his
overall GPA is maximized. In this work, we have chosen to maximize the overall
GPA which has been highly valued among students within the highly competitive ed-

368

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II

exo
Text Box



CR 3

ucation systems [1]. Therefore, selecting what courses to be taken in their following
terms should be done very carefully. For example, students who perform well in pro-
gramming courses tend to perform well in advanced programming and data analytics
courses. For such students, recommending both advanced coding and data analytics
courses to be taken within the same term would not be a problem. However, for stu-
dents who had performed badly in programming courses, it will be more challenging
for them to take both advanced programming and data analytics courses within the
same term.

Our proposed personalized course sequence recommendation approach is divided
into two main stages:
Stage 1: Grade Estimation. The grade in course j after completing course i with
grade g, denoted as Eg

i j, where i, j ∈C,g ∈ G is estimated. We define the probability
of completing course j with grade g′ after completing course i with grade g, denoted
as Pgg′

i j , in equation (1). Sg′
j is the set of students who have taken course j and obtained

grade g′, Sg
i is the set of students who have taken course i and obtained grade g, and

S j is the set of students who have taken course j.

Pgg′
i j =

|Sg
i ∩Sg′

j |
|Sg

i ∩S j|
(1)

The expected grade of course j after completing course i with grade g, Eg
i j, is

defined by Equation (2). GPg′ represents the grade point of grade g′, where GPg′ =
{4,3,2,1,0}.

Eg
i j = ∑

g′∈G
Pgg′

i j ×GPg′ (2)

Stage 2: Course Sequence Construction. The course sequence is constructed in
order to maximize the overall estimated grade. For a particular student, an initial
solution is constructed by recommending the next course j, starting from |T |+1, that
satisfies the prerequisite requirements and Equation (3). The prerequisite requirement
is defined as a certain list of courses that must be completed until term |T | in order
for a particular student is able to take course j in term |T |+1.

argmax
j∈C

{
G j,|T |+1 =

∑t∈T ∑i∈C′t EGit
i j

∑t∈T |C′t |

}
(3)

We first recommend as many compulsory courses Cc as possible, before recom-
mending Ce. Once we recommend Cmax courses, we increase |T | by one, update C′t
and Git , and repeat the procedure until Ctotal is reached. The overall expected GPA,
E(GPA), of a student is defined in Equation (4). E(GPA) is also the objective function
to be maximized.

E(GPA) =
∑t∈T ∑i∈C′t Git

∑t∈T |C′t |
(4)

A course sequence for a particular student, say student A, can be represented as
a two-dimensional matrix |T |×Cmax, as illustrated in Figure 1. For example, in term
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3 (see row 3), we recommend student A to take courses 166, 204, 37, 72, and 4.
However, for cases where |T |×Cmax 6=Ctotal , -2 is added as a dummy value.

Fig. 1: Example of solution representation with |T |= 8,Cmax = 5,Ctotal = 38

To improve the initial solution, we propose an adaptive simulated annealing algo-
rithm [3]. The algorithm includes parameters that control temperature schedule and
the operator selections are automatically adjusted as the algorithm evaluates the later
iterations. This makes the algorithm more efficient and less sensitive to user-defined
parameters than pure simulated annealing. We adjust the probability of choosing the
local search operators, such that operators with good performance in the past itera-
tions will get a higher chance to be selected in the subsequent iterations. We imple-
ment six local search operators:

– Swap: choose two courses randomly from different terms and exchange their
positions.

– Move: choose two courses randomly from different terms, move the position of
the second course before the first course, and push back the courses in-between
both courses.

– 2-opt: choose two courses randomly and reverse the sequence between both courses.
– N-replacement: remove N courses (i.e. elective courses) from the solution, then,

add other N unselected courses to the solution. We implemented N = 1, 2, 3.

3 Experimental Results and Discussion

We use a real dataset from a particular school of a university in Singapore. To perform
grade estimation, we consider students who enrolled in years 2010 until 2018 with a
total of 3905 students and 644 courses. We classify grades into 5 categories, |G|= 5.
This grade estimation approach is tested on 572 students, we found that a mean abso-
lute error of 0.32 with 172 (366) students’ results are overestimated (underestimated).
This ensures the fairness of the measurement conducted in the following experiments
as the grade estimation is not always overestimated.
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The proposed algorithm is tested on a subset of students: students enrolled in
years 2011 until 2014, from two different program tracks, Track 1 and Track 2. Since
the final grade upon graduation are known, we are able to evaluate the performance of
our proposed algorithm by: (i) the number of students enjoying grade improvement
from the recommended course sequence compared to the actual course sequences.
This is derived by the number of students with E(GPArecommendation) > GPAstudent
and (ii) the grade improvement obtained if students follow our recommended course
sequences compared to their actual performance (measured by Equation (5)).

%imp =
E(GPArecommendation)−GPAstudent

GPAstudent
×100% (5)

From a total of 385 students, our proposed algorithm is able to improve the ex-
pected overall grade for 218 students, with an average improvement of 3.15%. Most
of the improvement comes from students with low GPAstudent grades. It is harder to
improve overall grades when the students have already obtained high actual grades
(i.e. above 3.0).

To overcome this matter, we try other two scenarios: (i) to increase |T | and (ii) to
perform grade moderation. The results are summarized in Table 1.
Scenario (i) - to increase |T |. This approach is implemented such that we are able to
”know more” about the student’s past performance. Here, we use |T | = 2, meaning
that we use student’s first and second terms information to recommend the course
sequence for the following terms. By using this approach, we are able to improve the
expected overall grade for 228 students, with an average improvement of 3.24%.
Scenario (ii) - grade moderation. This approach is implemented to ”adjust” our
grade estimation, depending on student’s performance in their first term (|T | = 1).
The moderation is done by deriving the performance index (PI) for each student, by
Equation (6), where xs is the average student’s grade in his first term and xd is the
average grade obtained by all students who have taken the same set of courses.

PI =
xs

xd
(6)

PI = 1 indicates that the student is normal (performs as well as the average student),
PI > 1 indicates the student has an academic ability above other students, and there-
fore we try to “upgrade” our grade estimation to match his ability, while PI < 1
indicates the student does not perform well compared with other students, and there-
fore we try to “downgrade” our predicted grade to match his ability. When applying
this approach, Equation (3) is replaced by Equation (7). In our experiments, this new
grade estimation scheme is shown to improve the expected overall grade for 236 stu-
dents; but, the average improvement falls to 2.71%.

argmax
j∈C

{
G j,|T |+1 =

∑t∈T ∑i∈C′t EGit
i j

∑t∈T |C′t |
×PI

}
(7)
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Table 1: Results of different scenarios

# improvement Average of %imp
Track 1 Track 2 Both Track 1 Track 2 Both

Initial approach 76 142 218 1.62 4.14 3.15
Scenario (i) 77 151 228 1.90 4.10 3.24
Scenario (ii) 83 153 236 0.97 3.83 2.71

4 Conclusion

In this paper, we introduce a personalized course sequence recommendation system to
suggest courses for students to achieve good academic performance. In our proposed
model, the main objective is to maximize the expected GPA with respect to several
constraints, such as the maximum number of courses taken in each term and prereq-
uisite constraints. We propose an adaptive simulated annealing algorithm in order to
solve the problem. The operator selections are dynamically adjusted. Our prelimi-
nary results show that the proposed algorithm is able to improve the expected GPA
by recommending course sequences for 218 out of 385 students, with an average im-
provement of 3.15%. The current model only concerns about maximizing GPA while
other factors that may affect the performance of students have not been considered
yet, such as instructors, colleges of students, and so on. Furthermore, the popularity
of a particular course has not been addressed in this work, e.g. courses with higher
number of students enrolled are more likely to be recommended. Machine learning
for education has recently gained attention in this recommendation system. For fu-
ture work, we will focus on using machine learning techniques to further improve the
grade prediction accuracy and develop a User Interface to allow students to use.
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Conflicts in Examination Timetabling under Uncertainty

Bernd Bassimir · Rolf Wanka

Abstract In the literature the examination timetabling problem (ETTP) is mostly
described as a post enrollment problem (PE-ETTP). As such it is known at optimiza-
tion time how many students will take an exam and consequently how big a room is
needed for the exam and which exams should not be held at the same time because
of overlapping student lists. In contrast some universities start their scheduling pro-
cess before students register. As such the model is subject to uncertainty in respect to
the number of students per exam and the conflicts between exams. In this work we
focus on the uncertainty of conflicts between exams and introduce two soft criteria
for handling this uncertainty. We show results for two real world instances taken from
the School of Engineering at the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU).

Keywords Examination Timetabling, Curriculum-Based Timetabling, Robust
Optimization

1 Introduction

In every academic term, universities are faced with a number of different aspects
of academic timetabling. Academic timetabling can be divided into two distinct, but
similar problems, namely the Course Timetabling Problem (CTTP) prior to each term
and the Examination Timetabling Problem (ETTP) at the end of the term.

In the literature the ETTP is often treated as a timetabling problem, where all
data is provided as input to a scheduling algorithm and no uncertainty is present.
This approach is sometimes called post-enrollment ETTP (PE-ETTP) or is at least
treated as PE-ETTP, e. g., see [5,6,8]. First the students register for their different
exams and after registration is finished the optimization takes place. In this approach
the complete input is known, as we have the exact number of students registered
for an exam and exams are in conflict, i. e., should not be scheduled at the same
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time, if there are students taking both exams. In practice however some universities
generate their schedules for the exams before this registrations takes place to provide
a time and date for the exams when students register, e. g., see [2,3,4]. Most often the
values for the number of students per exam are taken from the last year as well as the
conflicts that were present in the previous year.

In this work we focus on the implications of the uncertainty present in the con-
flict data. We discuss pitfalls when using an estimation approach for handling this
uncertainty and propose new soft criteria that avoid these issues and show promising
results on two real world instances of the School of Engineering at the FAU.

2 Model

Most of the following model is similar to the model presented in [7] except that we
allow multiple rooms per exam, which already makes the subproblem of assigning
rooms to exams in a fixed timeslot NP-complete, which can be shown by a reduction
from 3-partition.

Definition 1 An instance of the Examination Timetabling Problem is represented as
follows.

– E : A set of exams
– R: A set of rooms
– κ : R → N: the capacity available for each room and κ : P(R)→ N as the

canonical extension such that for X ⊆R : κ(X) := ∑r∈X κ(r)
– ν ∈ NE : A vector specifying for each exam how many students are attending
– Conflict matrix C ∈ NE×E : specifying the number of overlapping students of two

exams
– A set of hard constraints and a set of soft constraints with associated weights
– A number of available timeslots

Note that the vector ν and the conflict matrix C are subject to uncertainty in our case.

To be feasible, a timetable must meet the following hard constraints:

(H1) each exam is assigned to exactly one timeslot
(H2) each exam is assigned to one or more rooms
(H3) two exams that are in conflict are not scheduled at the same time
(H4) no room is used at the same time by two different exams
(H5) the sum of capacities of the assigned rooms is larger than the number of stu-

dents taking the exam

In our reduced model we use the soft constraints two-in-a-row, two-in-a-day and
period-spread as defined in [7] and the robustness soft constraint introduced in [2]

(S1) two-in-a-row: If two exams are in conflict according to C they should not be
assigned to two adjacent timeslots on the same day.

(S2) two-in-a-day: If two exams are in conflict according to C they should not be
assigned to two timeslots on the same day. Note that we exclude the directly
adjacent timeslot to avoid double counting.
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(S3) period-spread: If two exams are in conflict according to C they should not be
assigned to timeslots less than λ apart.

(S4) min
{

κ(RP(e))
ν(e)

∣∣∣ e ∈ E ,RP(e) is room pattern of e in current timetable
}

Each violation of a soft criterion induces a penalty corresponding to the number of
students that are in conflict given by conflict matrix C. For a feasible timetable, i. e.,
a timetable that satisfies hard constraints (H1) - (H5), we can formulate the objective
value to be minimized as the weighted sum of the penalties induced by the soft con-
straints (S1) - (S3) and the weighted negative value of soft constraint (S4), as (S1) -
(S3) have to be minimized and (S4) maximized.

3 New contribution

Hard constraint (H3) ensures for a feasible timetable, that for each student the cho-
sen exams do not overlap. However in a pre-enrollment setting these choices are not
known at scheduling time. It therefore becomes necessary to account for this uncer-
tainty in the scheduling process. We call a conflict active iff after registration there is
a student that takes both exams, otherwise the conflict is called inactive.

For a given major available lectures and therefore exams can usually be classified
into two distinct categories. The first group consists of exams a student has to take,
often called mandatory. Furthermore there might exist a portfolio of choices from
which a student has to select a certain amount of lectures and exams respectively,
called elective.

The strict robustness approach for this setting is to have no distinction between
these two categories and enforce conflict freeness, i. e., (H3), for all possible combi-
nations of exams of a major. However this approach leads to large numbers of con-
flicts per major and therefore no feasible timetable might exist for the model. This is
the case for the School of Engineering at FAU.

It becomes necessary to limit the conflicts that are taken into account in the
scheduling process. The resulting question is which conflicts to consider and which
to ignore. As for mandatory exams all students of the major have to take these exams
in a specified term and therefore all conflicts involving these exams have to be con-
sidered such that all students can take the exam in this term. Consequently there is no
uncertainty if such a conflict is active or inactive.

For conflicts between elective exams there is uncertainty whether the conflict is
active or inactive. The first possible solution for this uncertainty is to use data from
previous terms to estimate if a conflict is active and to take all conflicts that are
estimated to be active into account in the scheduling process. This was the approach
we used in previous works, when talking about the uncertainty in the number of
students per exam.

However there are a few inherent problems with this approach. The first problem
when using data for estimations, especially when taken from more than one previous
term is that almost all conflicts might be active and the model therefore becomes in-
feasible again. The other problem, which is far more problematic is that the resulting
timetables might get biased against certain possible choices. If a conflict is considered
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inactive the exams might be scheduled in the same timeslot, therefore no student can
attend both exams. In the following year the estimation will again treat this conflict as
inactive as no student has taken both exams in the previous term. This problem might
not even be visible to the responsible scheduler, however still reducing the acceptance
of the calculated timetables by the student body.

Instead of estimating which elective conflicts are active and enforcing them via
hard constraint (H3) we consider all elective conflicts to be inactive in regard to fea-
sibility. For these conflicts we introduce a new soft criterion to minimize the number
of students that cannot take all exams they want.

Given a feasible timetable T T as a set of timeslots we want to minimize the
following soft constraint.

∑
T∈T T

∑
e1,e2∈T
e1 6=e2

Ē[#students attending e1 and e2] (S5)

Ē is an estimator for how many students induce a given conflict between two exams.
Therefore (S5) measures the estimated number of students with a conflict in timetable
T T . Using this soft criterion instead of enforcing all estimated conflicts between elec-
tive exams through hard constraint (H3) there always exits a feasible timetable.

However this soft criterion will not prevent the issue of bias in regard to the
estimations. To also address this issue we formulate a second soft criterion.

∑
T∈T T

∑
e1,e2∈T
e1 6=e2

max{Ē[#students attending e1 and e2],1{e1,e2} is elective conflict} (S6)

Instead of using only the sum of estimated students for elective exam conflicts we
consider all elective exam conflicts with a value of at least 1. Therefore even if in the
last terms no student did choose both exams our optimization will try to schedule the
exams conflict free and thus enabling students to choose both.

4 Preliminary Results

To test the performance of the introduced soft criteria and to evaluate the impact on
the overall objective value, we used two real world data instances taken from the
School of Engineering at FAU. In our experiments we used a simulated annealing
algorithm, with a kempe-exchange neighborhood. A more detailed description can
be found in [2].

Table 1 and 2 show the arithmetic mean rounded to the nearest integer of 24 runs
using the simulated annealing algorithm for the summer term 2018 and the winter
term 2017 at the School of Engineering at FAU. The solutions are based on our in-
troduced model using estimations for the number of students attending an exam as
described in [1] and the arithmetic mean over the previous years for the elective con-
flicts and the minimum of the attending students for the mandatory conflicts. Each
solution is then evaluated with the actual values of the corresponding term. The val-
ues for the soft criteria (S1) - (S3) are shown, with the final value being the number
of students that have elective exam conflicts.
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Version (S1) (S2) (S3) #Conflicting

All Conflicts 6= 0 70 171 1720 73

All Conflicts 6= 0 + (S6) 132 146 1919 20

Only Mandatory + (S5) 78 163 1792 74

Only Mandatory + (S6) 142 141 1937 20

Table 1: Results on the Summer Term 2018 instance of the School of Engineering at
FAU.

Version (S1) (S2) (S3) #Conflicting

All Conflicts 6= 0 90 170 1832 109

All Conflicts 6= 0 + (S6) 168 169 2112 33

Only Mandatory + (S5) 106 182 1854 101

Only Mandatory + (S6) 173 178 2146 38

Table 2: Results on the Winter Term 2017 instance of the School of Engineering at
FAU.

Preliminary results show only a slight decrease in the objective values when us-
ing the soft criterion (S5) compared to the solution when considering the estimated
elective conflicts as active and enforcing them with hard constraint (H3). For the soft
criterion (S6) preliminary results show that we can reduce the number of students
that could not choose their intended exams by a factor of around 3. For this soft cri-
terion the objective value shows a larger increase. Partly this increase is a result of
the more robust solution, as the soft constraints measure the number of students with
conflicting exams in different timeslots, therefore if two exams are in conflict in the
same timeslot they do not distribute to the objective value. As such we can argue that
the price of robustness is tolarable.

5 Conclusion

In this work we address the issue of uncertainty in the ETTP model in regard to
the conflicts, when using a pre-enrollment approach. We discuss pitfalls when using
estimations for the conflicts between exams and introduce two soft criteria (S5) and
(S6) to address this uncertainty and the resulting issues. We present a case study
for two real world instances at FAU and give preliminary results that show only a
moderately large increase in the objective value, while providing a large decrease in
the number of conflicts.

References

1. Bernd Bassimir and Rolf Wanka. Probabilistic Curriculum-based Examination Timetabling. In Proc
12th International Conference on the Practice and Theory of Automated Timetabling (PATAT), pages
273–285, 2018.

377

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II



Bernd Bassimir, Rolf Wanka

2. Bernd Bassimir and Rolf Wanka. Robustness Approaches for the Examination Timetabling Problem
under Data Uncertainty. In Proc. 9th Multidisciplinary International Conference on Scheduling: The-
ory and Applications (MISTA), pages 381–395, 2019.

3. Alejandro Cataldo, Juan-Carlos Ferrer, Jaime Miranda, Pablo A. Rey, and Antoine Sauré. An integer
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Abstract The automatic generation of schedules has been in the focus of researches for
decades. Since small changes in the input have an exponential impact on the tested state
space, methods based on heuristics, linear programming, and artificial intelligence are the
most successful. Final exam scheduling is a special subtask of the generation of schedules,
where special requirements restrict the state space. The problem is examined with an integer
linear programming approach. A scoring system is elaborated, wherewith the goodness of
the generated schedules is measurable and comparable. The algorithm is tested on an actual
test set, which contained the registration of 100 students on the finals of bachelor’s degrees.
The results show that there is an optimal solution for this complexity. With some improve-
ments on the algorithm, there can be solutions, which are better and fairer than the manually
compiled schedules.

Keywords Final exam scheduling ·Mixed-integer linear programming · Scheduling algo-
rithm · State examination · Examination timetabling · Operations research · Optimization

1 Introduction

The final examination takes place at the end of the course in most universities. One of the
most common forms of this exam is the oral examination, where at one time in one room
only one student takes the exam in front of a board of examiners. All these instructors have
a special role, and some roles have so high requirements that only a few people can fulfil
it. The scheduling of the final exams may be done manually, but the non-automated process
can cause human errors, and it is hard to see it all, if all the requirements were fulfilled, and
if the scheduling is suitable for everyone. The complexity of this problem is based on two
levels.
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The scheduling problem is NP-complete [8]. Besides, many final-exam specific con-
ditions must be fulfilled, and some of them contradict each other readily. For example, we
want to distribute the workload among the examiners equally, but some instructors may have
many more students than others. It is also possible that the instructors (who have to be there
on a student’s exam) are not available at the same time.

The organization of this extended abstract is as follows. Besides Introduction, the ex-
tended abstract features six sections. In Section 2, we overview existing research on the
need for oral exams and examination timetabling. Section 3 describes the problem state-
ment and shows the challenges of final exam scheduling. Section 4 presents the structure of
the proposed approach and builds up the integer linear programming model for final exam
scheduling. In Section 5, the results are evaluated on a real-world data set. Section 6 presents
the results and success of the algorithm compared with our previous algorithms and algo-
rithms from the literature made for similar problems. Finally, Section 7 includes concluding
remarks.

2 Background

Scheduling is a widely researched topic in literature as several fields in our lives need to be
scheduled: preparing a timetable, scheduling our agenda, or scheduling working shifts also
belongs to this field.

A large area of research is examination timetabling, which includes the scheduling of
exams in universities. This field is the closest to the final exam scheduling problem presented
in detail in Section 3.

The goal is to allocate a session and a room to every exam to satisfy a given set of
constraints in the general problem. The result is a feasible exam timetable. However, each
institution will have some unique combination of constraints, as policies differ from insti-
tution to institution. Due to this diversity, the constraints of algorithms in the literature are
also various.

For example, in the studies of Wijgers and Hoogeveen (2007) [12], the examination
days were fixed, and every student could have only one exam per day. The availabilities
of instructors were considered but having an equal workload was not in focus. Al-Yakoob,
Sherali, and Al-Jazzaf (2010) [1], in their paper, considered availabilities too. Moreover,
they also took into account the distance between buildings. However, they did not handle the
exceptional cases like specific instructors could be assigned to given exams and instructors
could not have unique roles.

Kochaniková and Rudová, in their article from 2013 [9], gave a solution for oral final
exam scheduling, where a student and an instructor are assigned to every exam. They dealt
with the availabilities and parallel sessions, but the workloads were not in scope. In addition
to the shortcomings of the previously mentioned article, the paper of Ivancevic, Knezevic,
and Lukovic (2014) [7] did not take into account the availabilities. However, the instructors
were scheduled for whole blocks, and parallel exams were also allowed. Bergmann, Fischer,
and Zurheide (2014) [3] also considered the parallelization and workloads too, but instruc-
tors could not have particular roles. Aslan, Şı̂mşek, and Karkacier in 2017 [2] presented an
algorithm with equal workloads and collision prevention, but the availabilities of the people
were not in scope.

As can be seen from the previous examples, although the same problem is being ad-
dressed, the requirements taken into account can vary widely depending on the researchers’
priorities.
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3 Problem statement

This section shows how the final exam scheduling builds up. A small example is shown in
Figure 1, where the schedule of a day is shown.

Fig. 1 Example scheduling for one day

An examination period consists of timeslots (T is the set of all timeslots, t ∈ T is one
of the timeslots). The number of timeslots is equal to the number of students who must take
the exam in that semester. The set of students is S. In each timeslot, there is one final exam
named e. All exams together compound the whole scheduling named E.

A block is a homogeneous group of students per morning or afternoon, namely half a
day, where students are from the same faculty. The set of all blocks is B, and one block is
b ∈ B.

The participants and the relationships between them are shown in the Figure 2.

Fig. 2 Participants and their relationships

The instructors are a separate group named I. Several specific subsets can be identified
within I:

– The set of supervisors is named U ⊆ I. Every s ∈ S has a specialized u ∈U , thus
{s ∈ S}→ {u ∈U}. A supervisor may be assigned to several students:
{u ∈U}→ {s1,s2, . . . ,sn | ∀ si ∈ S}. Afterwards us means the supervisor of student s.

– The group of chairs is named C ⊆ I. The regulations of the given final exams specify
who can fill this role.

– The group of secretaries is named R⊆ I. They are the rapporteurs of the exams.
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– The group of inner members is named M ⊆ I. They are the inner instructors of the
department where the exam takes place.

There is also a resource group, which consists of courses (noted with O). Every student
has to choose a course, thus s student has an exam in course os. For each course, it is pre-
defined who can sit the exam for that course. It is defined for every o ∈ O who can examine
from that course. These instructors are examiners named Ao ⊆ I, so for every
{o ∈ O}→ {a1,a2, . . . ,an | ∀ ai ∈ Ao}. Afterwards,

⋃
o∈O Ao = A

An exam stands up, as shown in equation 1.

e ∈ {t,s,u,c,r,m,a | t ∈ T, s ∈ S,u ∈U,c ∈C,r ∈ R,m ∈M,a ∈ Ao,o ∈ Os} (1)

4 The proposed mixed-integer linear programming model

This section discusses how the mixed-integer linear programming model builds up for this
unique timetabling problem – for the final exam scheduling.

Integer linear programming is a well-known method for optimization problems[4]. The
standard form of it can be seen henceforth: there are some integer decision variables, which
values are searched, while the linear objective function is optimized, and linear equality and
inequality constraints are subjected.

4.1 Decision variables

By choosing the variables, they must be as suitable as they can to the actual problem. Be-
sides, there should be no unnecessary variables to avoid redundant calculations.

There are two primary variables, and both are binary. One is for instructors, and the other
represents the students. Both variables have two dimensions: people and timeslots. If the
value of i ∈ I instructor in timeslot t ∈ T is 0, then instructor i is not scheduled in t timeslot,
and if this value is 1, then i is scheduled in t. The same holds for students. The decision
variables of instructors are xi, t ∈ {0,1} | ∀i ∈ I, ∀t ∈ T , and the variables of students are
xs, t ∈ {0,1} | ∀s ∈ S, ∀t ∈ T .

The instructors, who have special roles, are noted as follows. The instructor who can be
a chair on an exam is shown as xc, t , which is identical to the variable xi, t , where i∈C holds.

Some additional decision variables are necessary for the fulfilment of certain constraints.
These were calculated based on the primary decision variables.

A hard requirement of the final exam scheduling is that the chairs and the secretaries
must be scheduled in whole blocks. Additional binary variables were introduced that present
the scheduling blocks of chairs and secretaries. These are shown in equation 2.

xc, b ∈ {0,1} ∀c ∈C, ∀b ∈ B
xr, b ∈ {0,1} ∀r ∈ R, ∀b ∈ B

(2)

Furthermore, some variables were constructed for optimizing the workload of instruc-
tors. The main point of this is to determine the difference between the optimal and the actual
workloads. However, in linear programming, there is no simple way to express the abso-
lute value of two decision variables. A method is to introduce two additional variables for
one person. The workload of chairs, secretaries, and members is optimized by applying the
variables like in formula set 3.
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xα
c ∈ Z+ ∀c ∈C xα

r ∈ Z+ ∀r ∈ R xα
m ∈ Z+ ∀m ∈M

xβ
c ∈ Z+ ∀c ∈C xβ

r ∈ Z+ ∀r ∈ R xβ
m ∈ Z+ ∀m ∈M

(3)

4.2 Objective function

Final exam scheduling has to fulfil some soft requirements (like instructors’ optimal work-
load or availabilities). These requirements are primarily defined in the objective function,
which looks like the expression 4.

min
i∈I

∑
i

t∈T

∑
t
(xi,t ∗Cost i,t)+

c∈C

∑
c

(
xα

c + xβ
c

)
+

r∈R

∑
r

(
xα

r + xβ
r

)
+

m∈M

∑
m

(
xα

m + xβ
m

)
(4)

The first part is for the availabilities of instructors where Cost i,t is a positive integer
constant, which belongs to the penalty point of instructor i ∈ I if he or she is not available in
timeslot t ∈ T .

The rest of the objective function belongs to the requirements of having equal workloads
for chairs, secretaries, and members. Here the derived decision variables of each instructor in
these roles are summarized, where for example, by the chairs xα

c means the difference from
the optimal workload in the positive direction (how much more than optional scheduled
exams the chair c has), and xβ

c means the difference in the negative direction. Of course, at
least one of these two variables have to be null.

4.3 Problem constraints

The scheduling has to fulfil many different requirements, and most of them are defined in
various ways as linear equality and inequality constraints. There are three types of problem
constraints which are defined below.

4.3.1 Constraints for derived decision variables

The first type of constraint refers to the derived decision variables. This formula set con-
tains the binary variables that present the scheduling blocks of chairs (shown in equation 5)
and secretaries (shown in equation 6). These variables have the value of 1 only if the deci-
sion variables in every timeslot in that given block are 1 – this means that the instructor is
scheduled in the whole block. The condition was formulated using “logical and” operations,
taking advantage of the solver’s capabilities. (Gurobi was used in the modelling, but many
other solvers can map these operations to MILP conditions.)

xc,b =
∧
t∈b

xc,t ∀c ∈C , ∀b ∈ B (5)

xr,b =
∧
t∈b

xr,t ∀r ∈ R , ∀b ∈ B (6)

The other derived variables are for optimizing the workload of instructors. In the case of
chairs, formula 7 should be minimized , where Dc is the optimal value of the workload of a
chair.
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∣∣∣∣∣b∈B

∑
b

xc,b−Dc

∣∣∣∣∣ (7)

However, as stated before, the absolute value could not be placed in the objective func-
tion, so instead of it, there should be two derived variables xα

c and xβ
c , subject to equation

8.

xα
c − xβ

c =
b∈B

∑
b

xc,b−Dc ∀c ∈C (8)

Furthermore, in the objective function there is xα
p + xβ

p instead of the absolute value 7.
The constrains for secretaries (9) and members (10) are similar. Dr is the optimal work-

load of secretaries and Dm refers to the optimal workload of members.

xα
r − xβ

r =
b∈B

∑
b

xr,b−Dr ∀r ∈ R (9)

xα
m− xβ

m =
t∈T

∑
t

xm,t −Dm ∀m ∈M (10)

4.3.2 Constraints refer to the basis of scheduling

Many constraints are necessary for getting an adequate final exam scheduling. The list of
them can be found in Table 1.

Table 1: Constraints for the fundamental contribution of scheduling

∑
i

xi,t ≤ 5 i ∈ I, ∀t ∈ T (11) There should be a maximum of 5 in-
structors in a timeslot.

∑
c

xc,t = 1 c ∈C, ∀t ∈ T (12) There should be one instructor at each
timeslot who can be the chair.

∑
r

xr,t = 1 r ∈ R, ∀t ∈ T (13) There should be one instructor at each
timeslot who can be the secretary.

∑
m

xm,t ≥ 1 m ∈M, ∀t ∈ T (14)

There should be at least one instructor
at each timeslot who can be the mem-
ber. There are some situations when
there must be more instructors in an
exam who could be the member (e.g.
the supervisor and the examiner could
also be members and different peo-
ple). That is the reason for the mini-
mum criteria.

∑
m

xm,t ≤ 2 m ∈M, ∀t ∈ T (15)
There should be a maximum of two
instructors in a timeslot who could be
in the role of member.
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∑
s

xs,t = 1 s ∈ S, ∀t ∈ T (16) There should be precisely one student
in every timeslot.

∑
t

xs,t = 1 t ∈ T, ∀s ∈ S (17) Every student should be in exactly
one timeslot.

xs,t − xus,t ≤ 0 ∀t ∈ T , ∀s ∈ S (18)
The supervisor of the student should
be there on the exam when the student
has the examination.

xs,t −∑xacs ,t ≤ 0 ∀t ∈ T , ∀s ∈ S (19)
An examiner from the student’s
course should be there on the exam
when the student has the examination.

4.3.3 Constraints for further requirements

The model has to fulfil all the hard requirements which were defined before. These are listed
in Table 2.

Table 2: Constraints for further hard requirements

∑
c

xc,b = 1 c ∈C, ∀b ∈ B (20) There should be precisely one chair in
every block.

∑
r

xr,b = 1 r ∈ R, ∀b ∈ B (21) There should be precisely one secre-
tary in every block.

c∈C

∑
c

t∈T

∑
t
(xc,t ∗Costc,t) = 0 (22)

Chairs should be scheduled if only
if they are available. (Costc,t is the
penalty score for non-availability.)

r∈R

∑
r

t∈T

∑
t
(xr,t ∗Costr,t) = 0 (23)

Secretaries should be scheduled
if only if they are available.
(Costr,t is the penalty score for
non-availability.)

∑
b∈B
b xc,b ≥ D−c ∀c ∈C

∑
b∈B
b xc,b ≤ D+

c ∀c ∈C
(24)

The workload of chairs should be
held between limits. (D−c is the abso-
lute minimum value of the workload
of chairs, D+

c is the maximum.)

∑
b∈B
b xr,b ≥ D−r ∀r ∈ R

∑
b∈B
b xr,b ≤ D+

r ∀r ∈ R
(25) The workload of secretaries should be

held between limits.

∑
t∈T
t xm,t ≥ D−m ∀m ∈M

∑
t∈T
t xm,t ≤ D+

m ∀m ∈M
(26) The workload of members should be

held between limits.
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5 Case study

The algorithm was tested on an actual test set, acquired from the Budapest University of
Technology and Economics (BME), Department of Automation and Applied Informatics.
The official regulation of BME is available online at [10] and [11]. The test set contains 100
students, 49 instructors and 12 courses. Just for these 100 students, the number of possible
schedules is about 10462, according to equation 27.

100!×4100×9100×10100×3100 ≈ 10462 (27)

where 100 is the number of timeslots, 4 is the number of chairs, 9 is the number of
secretaries, 10 is the number of members, and 3 is the average number of instructors for a
course.

As noted before, the Gurobi solver was used to solve the model.
There were 15106 decision variables, 260 constraints, and it runs for 1,3 seconds on 8

threads. The minimized objective value was 40.
We analysed the solution by hand, and we found out that members and secretaries did

not fulfil only requirements for equal workloads. The only reason for this was that these
instructors have many more students than the others, and they should be there on more
exams as supervisors.

6 Achieved results

We have made a scoring system in advance for requirements, which is practical for measur-
ing the schedule’s goodness. Furthermore, the schedules could be compared to each other
based on the penalty points. We have made two different algorithms before for the final exam
scheduling, a genetic algorithm-based [6] and a heuristic approach based on pair graphs and
the Hungarian method [5].

First, we compared the results of MILP with our own earlier algorithms. The outcomes
are illustrated in Figure 3. As it can be seen, the MILP-based algorithm was the best in every
sight. MILP scores more than ten times better than the previous best-performing heuristic
algorithm and performs better orders in runtime under similar conditions.

Fig. 3 The comparison of own scheduling algorithms
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MILP models are often worth examining from a scalability point of view. In final exam
scheduling, 100 students are the average number of students per student group. There may
be some increase for popular courses (such as computer science, for which the test case
was made). However, given the university’s capacity, the maximum number of students per
teaching base is 150. Taking this case into account, the performance of the algorithm was
tested for both 125 and 150 students, and a fictitious set of 175 and 200 students were
generated, which far exceeds the real numbers. The results of this are shown in Figure 4,
which shows that for 125 students, there is little difference, while above 150 students, the
runtime starts to increase. However, it can be seen that for a set of 200 students, the running
time is significantly better than for any other algorithm on a set of 100 students.

Fig. 4 Testing the scalability of the algorithm

Furthermore, the results are compared to some algorithms discussed in the literature
(close to our problem’s statement) based on comprehensive properties. The results are de-
picted in the Table 3, where 3 means that this requirement is considered and fulfilled, and
7 otherwise. 3/7 means that it is invented but not implemented yet.

Table 3 Algorithms compared along with their abilities
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own MILP-based algorithm 3 3 3 3 3/7 3

Wijgers, Hoogeveen [12] (2007) 7 7 3 3 7 7

Al-Yakoob, Sherali, Al-Jazzaf [1] (2010) 3 3 3 7 3 7

Kochaniková, Rudová [9] (2013) 3 7 3 7 3 3

Bergmann, Fischer, Zurheide [3] (2014) 3 3 3 7 3 7

Ivancevic, Knezevic, Lukovic [7] (2014) 7 7 7 3 3 3

Aslan, Şı̂mşek, Karkacier [2] (2017) 7 3 7 7 3 7

According to these, it can be said that our algorithm gives a more comprehensive solu-
tion for more questions. It covers more abilities of final exam scheduling than the algorithms
discussed before in the literature for similar problems.
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7 Conclusion

Despite the popularity of scheduling, the topic of the final exam scheduling provides another
exciting problem because it cannot be created in a ”normal” scheduling design methodology.
It needs comprehensive solutions.

A model based on linear programming has been developed, which considers more as-
pects at the same time than similar solutions discussed in the literature. It also far outper-
forms algorithms previously developed for this problem.

With some improvements to our algorithm (like introducing parallel exams), there can
be solutions, which are better and fairer than the manually compiled schedules.

Acknowledgements Project no. FIEK 16− 1− 2016− 0007 has been implemented with the support pro-
vided from the National Research, Development and Innovation Fund of Hungary, financed under the Centre
for Higher Education and Industrial Cooperation - Research infrastructure development (FIEK 16) funding
scheme.
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Abstract Rest durations of opposing teams have recently emerged as a new
fairness criterion for the timetabling of sports leagues. A rest difference is the
difference between the rest durations of the opposing teams of each game. A
problem, so-called rest difference problem, simultaneously schedules the games
to the rounds and assigns the games of each round to the matchdays in order
to minimize the total rest difference throughout a round robin tournament. In
this study, we provide a mixed integer programming (MIP) formulation of the
problem and propose a heuristic method which outperforms the results of the
MIP on several problem instances.

Keywords sports timetabling · tournament fairness · rest differences · circle
method · Vizing method

1 Introduction

Timetabling of round robin tournaments with respect to various fairness crite-
ria is one of the most popular research topics in sports scheduling. The related
literature has mainly focused on fairness issues such as balancing the carry-
over effect (e.g. Russell (1980), Anderson (1997), Guedes and Ribeiro (2011))
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or the opponent’s strength in a series of consecutive matches (e.g. Briskorn
(2009), Briskorn and Knust (2010), Zeng and Mizuno (2013)), and minimizing
the total number of breaks (e.g. de Werra (1981), Elf et al. (2003), Miyashiro
and Matsui (2005), van’t Hof et al. (2010)). However, fairness criteria regard-
ing the rest durations between the consecutive games have not received much
attention by researchers. In this study, we consider such a fairness criterion
which aims to minimize the total number of rest differences between the op-
posing teams of each game in a compact round robin tournament. A round is
composed of a set of games in which every team plays at most one game. In
compact round robin tournaments, games are scheduled in a minimum number
of rounds necessary for finishing all the games so that each team plays exactly
one game in each round. Since each round usually consists of several days in
practice, tournament organizers need to determine the matchday of each in-
dividual game in a compact round robin tournament. The problem, so-called
the rest difference problem (RDP), constructs a timetable which determines
both the round and matchday of each game such that the total rest difference
(the difference between the rest durations of two opposing teams in a game)
throughout the tournament is minimized.

We now provide an illustrative example to describe the rest difference prob-
lem. In the example, we consider a single round robin (SSR) tournament in
which each of n = 10 teams plays against each other exactly once. The tour-
nament is composed of 9 rounds and each team plays exactly one game in
each round (since the SSR tournament is assumed to be compact). The total
number of games is n(n − 1)/2 = 45. Assuming that each round is spread
into 3 consecutive matchdays, the next round immediately starts the next day
after the last matchday of the previous round. As a result, the tournament
lasts for 27 days. Table 1 provides a feasible timetable for this example. The
number of games distributed to first, second and third matchdays are selected
to be 2, 2 and 1, respectively. Table 2 illustrates the rest durations of opposing
teams in each game. One can observe that the opposing teams do not rest
equal number of days in most of the games of this timetable. For example,
before the game 13 (G13) between team 6 and team 2 in round 3, team 6 and
team 2 play their games of previous round in the third and first matchdays,
respectively. Therefore, team 6 has two days before its game in round 3, while
team 2 has four days, which is 2 days more than the rest duration of team 6.
The rest difference of 2 days between the teams in this game is considered as
an unfairness that weighs against team 6 (or favors team 2). When we sum
the rest differences in all games of Table 2 , the total rest difference in this
tournament is found to be 38.

There exist a few studies regarding the relative rest durations of the op-
posing teams. Suksompong (2016) investigates three different fairness criteria,
guaranteed rest time, games played difference index, and rest difference index,
in asychronous round robin tournaments. Asychronous tournament is a special
case of round robin tournaments in which each game is played at a distinct
consecutive time (e.g. matchday). In particular, rest difference index bears a
resemblance to the objective function of rest difference problem. The rest dif-
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Table 1 A feasible timetable of RDP(10,3)

First Matchday Second Matchday Third Matchday
Round 1 G1: 1 vs 10 G2: 2 vs 9 G3: 3 vs 8 G4: 4 vs 7 G5: 5 vs 6
Round 2 G6: 10 vs 2 G7: 7 vs 5 G8: 8 vs 4 G9: 9 vs 3 G10: 1 vs 6
Round 3 G11: 1 vs 4 G12: 5 vs 3 G13: 6 vs 2 G14: 7 vs 10 G15: 8 vs 9
Round 4 G16: 2 vs 3 G17: 8 vs 6 G81: 9 vs 5 G19: 10 vs 4 G20: 1 vs 7
Round 5 G21: 4 vs 5 G22: 10 vs 8 G23: 2 vs 7 G24: 3 vs 6 G25: 1 vs 9
Round 6 G26: 1 vs 5 G27: 6 vs 4 G28: 7 vs 3 G29: 8 vs 2 G30: 9 vs 10
Round 7 G31: 1 vs 8 G32: 9 vs 7 G33: 10 vs 6 G34: 2 vs 5 G35: 3 vs 4
Round 8 G36: 4 vs 2 G37: 1 vs 3 G38: 5 vs 10 G39: 6 vs 9 G40: 7 vs 8
Round 9 G41: 1 vs 2 G42: 3 vs 10 G43: 4 vs 9 G44: 5 vs 8 G45: 6 vs 7

Table 2 Rest durations (in days) for the timetable given in Table 2

First Matchday Second Matchday Third Matchday
Round 1 G1: – G2: – G3: – G4: – G5: –
Round 2 G6: 3 vs 3 G7: 2 vs 1 G8: 3 vs 3 G9: 4 vs 3 G10: 5 vs 3
Round 3 G11: 1 vs 2 G12: 3 vs 2 G13: 2 vs 4 G14: 4 vs 4 G15: 4 vs 4
Round 4 G16: 2 vs 3 G17: 1 vs 2 G18: 2 vs 4 G19: 3 vs 4 G20: 5 vs 4
Round 5 G21: 2 vs 2 G22: 2 vs 3 G23: 4 vs 2 G24: 4 vs 4 G25: 3 vs 4
Round 6 G26: 1 vs 3 G27: 2 vs 3 G28: 3 vs 3 G29: 4 vs 3 G30: 3 vs 5
Round 7 G31: 3 vs 2 G32: 1 vs 2 G33: 2 vs 4 G34: 3 vs 4 G35: 4 vs 5
Round 8 G36: 1 vs 2 G37: 3 vs 1 G38: 3 vs 3 G39: 3 vs 4 G40: 5 vs 5
Round 9 G41: 3 vs 3 G42: 3 vs 2 G43: 4 vs 3 G44: 3 vs 2 G45: 4 vs 3

ference index defined in the aforementioned study is equal to the maximum
difference in rest durations of opposing teams among all games of a timetable,
while the objective function of rest difference problem is the sum of rest differ-
ences in all games of a timetable. The study also shows that the lower bound
for the rest difference index is 1, and a timetable with n ≥ 6 teams constructed
by the circle method always has the rest difference index value of 2.

Atan and Çavdaroğlu (2018) is another study concerning the rest durations
of the opposing teams comparatively. In this study, they first define a fairness
criterion called rest mismatch as the occurrence of a difference between the
rest durations of two opposing teams in a game. It should be noted that
a rest mismatch does not consider the magnitude of the difference in the
rest durations of opposing teams. Next, they construct a timetable with both
round and matchday assignments that aims to minimize the total number of
rest mismatches in the tournament. The heuristic proposed in the study finds
optimal results but only works for rest mismatch problems where the number
of matchdays is restricted to 2 and the number of teams is a multiple of 8 (It
finds near optimal results if the number of teams is a multiple of 4 but not 8).

Last but not least, Çavdaroğlu and Atan (2020) investigates the rest dif-
ference problem for given opponent schedules, i.e. schedules in which games
have already been assigned to rounds. The study shows that the rest differ-
ence problem of a given schedule is decomposable into optimizing the rounds
separately, and that each decomposed problem is an instance of the quadratic
assignment problem. It also provides a polynomial-time exact algorithm for
opponent schedules constructed by the circle method.
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The organization of the rest of the paper is as follows. Section 2 first for-
mally describes the problem of minimizing the sum of rest differences of teams
by determining the round and matchday of each game. In Section 3, a heuristic
method that decides the round and matchday of each game is described. The
experiments and the comparison of the performance of the heuristic method
with that of mixed integer programming formulation are also given in this
section. Section 4 concludes the paper.

2 A Formal Description of the Problem

Suppose that there is a single round robin tournament (SRRT) for teams
i ∈ T = {1, . . . , n} where n is even. In each round r ∈ R = {1, . . . , n − 1},
the games of that round have to be assigned to consecutive matchdays d ∈
D = {1, . . . , p}. The Rest Difference Problem with n teams and p matchdays
is prescribed as RDP(n, p). In RDP(n, p), we assume that games g ∈ G =
{1, . . . , n(n− 1)/2} are allocated to p matchdays as evenly as possible in each
round. If an allocation with equal number of games in each matchday is not
possible, then the numbers of games in the matchdays are assumed to be in
descending order. For example, if p = 3 in an SRRT with n = 10 teams, the
number of games in the matchdays should be (2, 2, 1). Let playg,i get the value
of 1 if team i plays in game g, 0 otherwise. The number of games to be played
in matchday d of each round is denoted by nGamesd. We let M be a large
positive number at least equal to p − 1, the maximum possible difference in
rest periods between two teams. The binary variable xg,r,d decides if game g is
played in matchday d of round r or not. The binary variable yg,r represents the
decision of whether game g is assigned to round r or not. The rest difference
variable p1g (p2g) denotes the number of days the first (second) team in game g
had less rest than its opponent. Unless the opposing teams of game g rest for
equal amount of time after their games in the previous round, a difference in
rest durations occurs and either p1g or p2g gets a positive value. The following
mixed integer program (MIP1) formulates RDP(n, p).

min z =
∑
g∈G

p1g + p2g (1)

subject to: ∑
r∈R

∑
d∈D

xg,r,d = 1 ∀g ∈ G (2)

∑
d∈D

xg,r,d = 1 ∀{g ∈ G, i ∈ T : playg,i = 1}, ∀r ∈ R (3)

∑
g∈G

xg,r,d = nGamesd ∀r ∈ R,∀d ∈ D (4)

∑
d∈D

xg,r,d = yg,r ∀g ∈ G,∀r ∈ R (5)
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∑
d∈D

d · xg′ ,r−1,d −
∑
d∈D

d · xg′′ ,r−1,d + p2g − p1g ≤M · (1− yg,r)

∀{i, j ∈ T, g, g
′
, g

′′
∈ G : playg,i = playg,j = playg′ ,i = playg′′ ,j = 1},∀r ∈ R \ {1}

(6)

xg,r,d ∈ {0, 1} ∀g ∈ G,∀r ∈ R,∀p ∈ P (7)

yg,r ∈ {0, 1} ∀g ∈ G, ∀r ∈ R (8)

p1g,r, p
2
g,r ≥ 0 ∀g ∈ G (9)

The problem’s objective is to generate a timetable that minimizes the to-
tal rest difference among the opposing teams of all n(n − 1)/2 games in the
tournament. Constraint 2 assigns each game to exactly one matchday in the
timetable. Constraint 3 makes sure that each team plays exactly once in each
round. Constraint 4 sets the number of games to be played in each matchday.
The number of games in each matchday d is determined a priori with nGamesd.
Constraint 5 determines in which round a game was set to be played by the
model. Constraint 6 checks for the first and second team of each game g in
each round, identifies the matchdays of the games g′ and g′′ played by these
two teams in the previous round, and finds the time difference between these
matchdays. This difference is equal to the rest difference of the opposing teams
in game g. If the time difference is in favor of the first (second) team, then
p2g (p1g) gets a positive value while p1g (p2g) is forced to be zero. Constraint 7
through Constraint 9 give the types of decision variables.

Solving MIP1 with commercial solvers cannot return feasible solutions for
some RDP(n, p) instances within a reasonable amount of time particularly
when n and p values are increased (refer to Section 3 for more details). Even
though the computational complexity of RDP has not been proven yet, we
conjecture that the problem is NP-hard.

3 A Heuristic Method and Experimental Results

In this section, we propose a heuristic method that can be applied to the
RDP(n, p) where n is the (even) number of teams, and p is the number of
matchdays. The heuristic method is conducted in two steps. First, we generate
an initial opponent schedule for an SRRT with n teams using the well-known
circle method. The circle methods is popular in sports scheduling particularly
because it minimizes the number of breaks (the occurrence of consecutive home
or away games) in round robin tournaments. (More details about how the cir-
cle method is applied to construct league schedules can be found in Çavdaroğlu
and Atan (2020)). In this initial schedule, the games of each round are iden-
tified without assigning the games into matchdays. Second, the rounds of the
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initial schedule are randomized and then the matchdays are determined for
each randomized schedule using a mixed integer programming model which
minimizes the total rest differences for a given opponent schedule. This MIP
model is a modified version of MIP1 presented in Section 2. The formulation of
the modified MIP model (MIP2) can be found in Çavdaroğlu and Atan (2020).
It is developed to solve the RDP(n, p) in which the opponent schedule (i.e.
round assignment of games) is given a priori. Using MIP2, matchday assign-
ments are found for each randomly generated schedule and the timetable (i.e.
opponent schedule with matchday assignments) having the lowest total rest
difference value is selected as the best solution found.

The same heuristic is also applied for a set of opponent schedules generated
using a procedure known as edge coloring or Vizing method (Januario et al.
(2016), Januario and Urrutia (2012)). Vizing method presents a framework for
the construction of an arbitrary edge coloring of a complete graph Kn with
n − 1 colors where each one of n teams corresponds to a vertex, each game
between teams i and j to an edge (i, j) of Kn, and each color to a distinct
round. Thus, edges with the same color are the games played during the same
round, and each arbitrary edge coloring of a complete graph Kn represents an
opponent schedule for SRRT with n teams.

In Table 3, the first column provides the problem instances we considered
in our experimental analysis. These instances span all RDP(n, p) instances
having n = 16, 18, 20 teams and p matchdays ranging from 2 to n/2. As
mentioned earlier in the formal description, we assume the games are allocated
to matchdays as evenly as possible. This allocation for each instance is shown
in the second column.

The computer runs were executed on an Intel Core i7-7600U CPU 2.9
GHz computer with 8GB of RAM. MIP1 solutions are given in the third col-
umn along with their run times. They were obtained with GAMS using either
Gurobi (Gurobi Optimization Inc., 2019) or CPLEX (IBM, 2019) solver. Note
that these instances were solved by both solvers but only the best solutions
were reported. For MIP1 solutions, a time limit of 10 hours (36,000 seconds)
was used. In all instances, we ran the solver by the end of the time limit, and
reported the best solutions found. It can be noted that in some instances MIP1
could not even find a feasible solution within the time limit. The results also
show that MIP1 performs poorer with increasing values of n and p since both
the number of decision variables and the number of constraints are strictly
increasing functions of n and p. Moreover, in none of the instances did MIP1

find a lower bound better than 0.

To obtain timetables with total rest difference values better than that of
the MIP1 solutions, we generate λcm = 1000 random permutations of rounds of
the initial opponent schedule that is constructed using the circle method. We
also generate λvm = 1000 arbitrary edge colorings using the Vizing method.
After solving MIP2 model for each one of λcm (λvm) schedules of RDP(n, p) and
selecting the schedule with the lowest total rest difference value, the heuristic
using the circle method (the Vizing method) produces the results given in the
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fourth (fifth) column of Table 3. For each given schedule of RDP(n, p), MIP2
finds the optimal result in less than 10 seconds.

Table 3 Results

RDP
(n, p)

# games in each
matchday

MIP1

(Time)

Heuristic with
circle method

Heuristic with
Vizing method

(16,2) 4,4 0 (66.75)* 28 16
(16,3) 3,3,2 28 (36000) 22* 30
(16,4) 2,2,2,2 44 (36000)* 72 60
(16,5) 2,2,2,1,1 84 (36000)* 98 86
(16,6) 2,2,1,1,1,1 12 8(36000) 104* 110
(16,7) 2,1,1,1,1,1,1 152 (36000) 136* 138
(16,8) 1,1,1,1,1,1,1,1 180 (36000) 160* 166
(18,2) 5,4 16 (36000) 32 14*
(18,3) 3,3,3 36 (36000)* 64 44
(18,4) 3,2,2,2 54 (36000)* 96 60
(18,5) 2,2,2,2,1 118 (36000) 128 90*
(18,6) 2,2,2,1,1,1 176 (36000) 160 124*
(18,8) 2,1,1,1,1,1,1,1 No Solution 224 186*
(18,9) 1,1,1,1,1,1,1,1,1 No Solution 256 218*
(20,2) 5,5 14 (36000)* 36 24
(20,3) 4,3,3 70 (36000) 72 44*
(20,4) 3,3,2,2 108 (36000) 108 72*
(20,5) 2,2,2,2,2 166 (36000) 144 106*
(20,6) 2,2,2,2,1,1 168 (36000) 180 148*
(20,7) 2,2,2,1,1,1,1 260 (36000) 216 172*
(20,8) 2,2,1,1,1,1,1,1 No Solution 252 206*
(20,9) 2,1,1,1,1,1,1,1,1 No Solution 288 244*
(20,10) 1,1,1,1,1,1,1,1,1,1 No Solution 324 274*

In Table 3, for each problem instance, the method with the lowest total rest
difference value is marked with an asterisk (*). It can be stated that in most
problem instances the heuristic approach with either circle method or Viz-
ing method performs better than the commercial solvers running MIP1 model.
RDP(16,2), RDP(16,4), RDP(16,5), RDP(18,3), RDP(18,4), RDP(20,2) are
the only cases where MIP1 performs better than the heuristic approaches. On
the otherhand, for the cases where p ≥ 6, the heuristic approach always out-
performs MIP1. Thus, one could arguably claim that with increased values of p
the heurtic approach is more likely to give better results than the MIP model
of the problem. Last but not least, in all instances where either n = 18 or
n = 20, the heuristic with Vizing method outperforms the heuristic with the
circle method.
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4 Conclusion

In this study, we first introduce the rest difference problem which aims to mini-
mize the total rest differences of opposing teams by determining the round and
matchday of each game. We then present a mathematical formulation of the
problem. The proposed heuristic is capable of finding timetables with better
objective values than MIP formulation for most problem instances considered.

We believe that there is still some room for further improvement in the
total rest difference value. The schedules obtained by swapping the rounds of
a schedule generated by the circle method are isomorphic. Rather than using
only a round swap, other neighborhood searches can be applied to the gen-
erated schedules potentially leading to more diverse schedules. In the second
stage where we solve RDP(n, p) for a given opponent schedule, the MIP model
would then be able to find a timetable with even further improved total rest
difference values.

On the other hand, in this research, we assume that the games are allo-
cated to matchdays as evenly as possible. For future work, one can consider
different allocations of games. Changing allocations of games in the matchdays
may lead to an improved or worsened total rest difference value. Furthermore,
we provide another direction for future work regarding rest differences. Rather
than minimizing the total rest difference in the tournament, one can investi-
gate to balance the rest differences over the teams.
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REDOSPLAT DSL for timetabling requirements
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Abstract This paper presents a declarative language called REDOSPLAT
intended to describe timetabling problems. It is designed for textual entry.
Unlike most timetable data formats, REDOSPLAT uses easy to understand
syntax based on sentences which describe requirements. DSL is complemented
with a wizard which defines ordinary sentences.

Keywords Timetabling · DSL · REDOSPLAT

1 Introduction

Different formats and languages were developed to formulate requirements for
timetabling problems. Some of them are line oriented languages [1], others
mimic object-oriented programming languages [2], and some use language for-
mats for expert systems [3]. XML is also base for wide number of languages [4].
In addition, there are languages similar to spoken languages. They are intu-
itive when it comes to data entry and include UniLang [5] and REDOSPLAT
[6]. REDOSPLAT is a language that has been developed for about 10 years.
Its latest version was introduced in 2018, and it is the topic of this paper. It
is primarily made for school timetabling, but it can also be used for univer-
sity and examination timetabling. It is a domain-specific declarative language
whose sentences resemble those of spoken language. In our examples, the focus
will be on school timetabling problems.
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2 Language scope

REDOSPLAT is designed to express different requirements for timetabling in
schools across the world. It is used to describe time, resources, events, con-
straints, and solving goals. Time is expressible as days, working shifts (with a
list of time slots they belong to) and time slots (with a day they belong to).
Resources can have short and long names and they include sites (for schools
in different cities and buildings), rooms (with optional capacity, price or site),
classes (with optional default shift and the number of students), sub-class
groups (with an optional number of students or percentage of class they be-
long to), joined multiple classes, teachers and courses (which can be grouped
in categories). Event descriptions may be complex sentences, because describ-
ing events vary from simple ones (where the single teacher teaches a course
to dedicated class), to events that allow selection between teachers, multiple
teachers at the same time, joined classes, choice between rooms, lessons in
multiple rooms, fixing time slots, spreading over the week, double and triple
lessons, simultaneous lessons and lesson ordering. Constraints include unavail-
able time slots or days (for teachers, classes and rooms), wishes for time slots
(soft constraint for teachers, classes and rooms with weight), default rooms
(for teachers and classes), daily limits (minimal or maximal number of events
per teacher/class/course category can be held in a day or shift), a prohibition
that two teachers, rooms or classes can not be allocated at the same time, idle
time policy (soft or hard) and travel time between sites. Preferred goals may
be adjusted to define the main goal of solving (reducing idle time, reducing
travel time, satisfy timeslot wishes, or make a balance between course cate-
gory). Most of the requirements are optional, and do not need to be entered,
but if the underlying solving engine supports it, they are used in the solution.

3 Language syntax examples

In schools, time is represented through time slots that generally have the same
length. Time slots may belong to days and to shifts. Shifts are sets of time
slots, usually morning or afternoon slots. These sentences describe one day,
one timeslot and one shift.

Monday is day number 1.

MO1 is time slot 1 on Sunday.

SH1 is a shift consisting of MO1, ...

Here is an example of possible sentences describing classes, subgroups and
teachers.

I is a class.

II is a class from shift SH1.

I-a is a subgroup of I.

JohnFein is a teacher.

Courses can be divided by categories so that some special restrictions, such
as favouring difficult courses to occur in the earlier time slots, can be defined
as well.
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Mathematics is a course. Chem is course of category 2.

FEE is a course called "Fundamentals of electrical engineering".

Rooms may have their own capacity (number of seats), a fixed price if
rented, and locations if lessons are taught in multiple buildings.

R1 is a room.

R2 is room with 30 seats costs 18.

FS is a room called "Sports Hall".

SwimmingPool is a building.

SP is located in SwimmingPool.

It is possible to assign a room to a particular teacher, class or subject. It
is also possible to assign a teacher to the class that he or she teaches.

JohnFein is located in R1.

II is located in R2.

The main sentence creates an event (lesson). The event can have a teacher,
a class, a room (or more of each of these resource), and the way lessons are
spread over the week (doubles, triples). It is also possible to fix lessons of a
course at predefined time slots if necessary.

KatinaFein teaches English to the group II1, II2

3 times a week, separately, with 1 double, in the room R1.

Following these basic requirements, special requirements may be added
which include:

– unavailability of teachers, classes and rooms in designated time slots (this
is a hard constraint);

SportsHall is unavailable on MO10.

JohnFein is unavailable on Friday.

– expressing the desire for the class, teacher or room to be used or not used
within a certain time slot, which also sets the coefficient weight (soft con-
straint);

JohnFein wishes time slots MO1 (200).

– requiring specific time slots by teachers, classes or rooms;
ValeriBrowning requests time slot MO2.

– restrictions on the minimum and maximum hours for classes and teachers
(and rooms) during the day or shift;

Ia has between 5 and 7 lessons.

NencyGreen has a maximum of 0 lessons on Friday.

– limiting the number of time breaks for teachers and classes;
Pauses for I are forbidden.

Pauses for ValerieBrowning are limited to 1.

– regulating special time slot overlaps;
MO2 overlaps with MO1.

– regulation of special prohibition of simultaneous lessons for some teachers,
classes and rooms;

II1 conflicts with II2.
– class aggregation;

CompetitionMath is composed of I-a, II1.

– travel time between locations;
Travel time between SwimmingPool and MainBuilding is 2 timeslots.
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4 IDE, wizzard, solving and usage

Although easy to read, typing in multiple similar sentences can be boring.
To simmplify entry of sentences, a wizzard-based GUI was created allowing
quick generation of basic constraints (time, teachers, classes, courses, rooms,
capacities, workloads).

However, less used constrains are not covered by GUI, because they will
tend to clutter and slow down the entry. Specific requirements and exceptions
to the default values are entered subsequently by modifying the generated
sentences and entering new ones. The editor includes syntax highlighting.

After selecting the algorithm and all other parameters needed to solve it,
a timetable is generated in the case of syntactically correct instances. The
solution can be presented in HTML, TABLE and XHSTT format. Conversion
from XHSTT to REDOSPLAT is also possible. The solution includes lists

401

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume II



REDOSPLAT DSL for timetabling requirements

of all requirements that are not met. REDOSPLAT is integrated with KHE
engine [7] based solvers [8] or linear programming based solvers [9] and multiple
algorithms for automatic timetable generation.

REDOSPLAT was tested at 16 local schools, of which 13 schools have
shifts. Within the selected schools we have 7 primary schools, 3 grammar
schools, 4 mixed secondary schools, 1 technical secondary school and 1 uni-
versity department. They vary in effort required to express the demands. The
easiest school has 20 classes with about 500 events, and works in 2 shifts. The
most difficult school has 56 classes and about 2500 events and it works in 4
shifts (2 for students and 2 for teachers). The university department has about
150 courses and 1900 events. Schools were visited 2-3 times, the first and sec-
ond time data were taken and the language was presented, and the second or
third visit was used to present a solution. The data entry for smaller schools
lasted 2-3 hours, including verification of entered data. The entry for larger
schools took 2-3 days, but the duration of data entry is not longer than the
time that schools normally need.

5 Concluding remark

REDOSPLAT is GPL licensed tool and it is available at
https://sourceforge.net/projects/redosplat/
We invite the interested reader to use and contribute to our software: by

adding better algorithms, speeding up the engine, suggesting new syntax ele-
ments to describe requirements that exist in some countries etc.

The simplified syntax may attract researchers to contribute with more real-
life examples for time table requirements.
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Abstract This article describes how we solved most instances of the ITC-
2021 as mixed-integer linear optimization problems (MILP). Our goal was to
contend in this competition without developing specialized algorithms, i.e.,
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First, we will present how we modeled the problems as MILPs, discussing
a few variations. Next, we describe how we combined methods to compute
better solutions increasingly by restarting different MILP solvers and running
the distributed massively parallel ParaXpress solver on HPC computers. Ad-
ditionally, we computed a particular objective function based on the analytic
center and either used this directly or with a newly developed variant of the
feasibility pump heuristic. In the end, we also added a simulating annealing
heuristic from the literature.
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1 Introduction

Our goal was to participate in the International Timetabling Competition
on Sports Timetabling ITC-20211 without developing specialized algorithms,
i.e., only by using existing software and mainly working on the modeling and
combining existing MILP solving approaches. In the following, we will describe
how we came up with a MILP-based approach that made us reach the finals
without special-purpose algorithms.

The challenge in ITC-2021 is to construct time-constrained double round-
robin tournament with 16 to 20 teams for 45 different scenarios. There are hard
constraints, which have to be respected, and soft constraints, which might be
violated, but whose violation will result in a penalty. The goal is to minimize
the penalties, which makes it a classical optimization problem. For details,
see [19].

Section 2 will present the MILP formulation we used and its variants. In
Section 3 we will describe our basic approach of repeated restarts. Then, as
some of the instances – expectedly – turned out to be difficult, we looked
into existing approaches for finding feasible MILP solutions and combined
them in a new manner: The analytic center objective and the feasibility pump
heuristics, described in Section 4. One of our original ideas was to model the
problem instances as MILPs and then solve them on a supercomputer. We
sketch the setup and outcome in Section 5. Regarding the general state-of-the
art in sports timetabling, we refer to [12,13].

2 The MILP model

We modelled the problem as a mixed-integer linear program (MILP) as follows:
First we define the set of teams: T := {0, . . . , teams − 1}, the set of slots
S := {0, . . . , slots − 1}, and S0 := S \ {0}, and S9 := S \ {slots − 1}. The
sets of slots of the 1st and 2nd half of the season are represented as : S1 :=
{0, . . . , slots/2 − 1}, S2 := S \ S1. Correspondingly, the sets of matches are
called M := {(i, j) | i, j ∈ T, i 6= j}. We introduce binary variables xijs with
(i, j) ∈ M and s ∈ S. xijs = 1 indicating whether team i is playing home
against team j away during slot s.

The following constraints ensure the basic requirements: each match gets
assigned exactly one slot:

∑
s∈S xijs = 1 for all i, j ∈M ; in each slot the num-

ber of matches equals half the number of teams:
∑

i,j∈M xijs = 1/2|T | for all s ∈
S; and each team only plays once in each slot:

∑
t,j∈M xtjs +

∑
i,t∈M xits =

1 for all s ∈ S, t ∈ T . We also added the (redundant) equation
∑

s∈S,(i,j)∈M xijs =

1/2|S||T |. Furthermore, in case we have a phased tournament, each pair of
teams can only play once per half season:

∑
s∈S1

(xijs+xjis) = 1 for all (i, j) ∈
M, i < j.

Now we introduce binary variables bhts, and bats, t ∈ T , s ∈ S0 indicating
whether team t has a home or away break during slot s, respectively. Addition-

1 https://www.sportscheduling.ugent.be/ITC2021
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MILP. Try. Repeat. 3

ally, we need the following constraints:
∑

a∈T\{t} xta,s−1 +
∑

a∈T\{t} xta,s ≤
1 + bhts for all t ∈ T, s ∈ S0 and similarly for bats.

Next, we introduce inequalities to enforce the different types of constraints
that can appear in the instances. Please see [19] for the parameters of the par-
ticular constraints: min, max, intp ∈ N, teams ⊆ T , slots ⊆ S, meetings
⊆ T 2. For CA2, CA3, CA4, and BR1 we only show the mode="HA" case, for
the two cases the respective x-variables have to be removed accordingly. Note
that the violation counter v∗ ≥ 0 has to be fixed to zero in case of a hard
constraint. This gives rise to the following constraints:

– CA1(max):
∑

n∈T\{t} xtns ≤ max + vca1 for all t ∈ teams, s ∈ slots for
mode="H", and xnts in case mode="A".

– CA1(max):
∑

n∈T\{t} xtns ≤ max + vca1 for all t ∈ teams, s ∈ slots for
mode="H", and xnts in case mode="A".

– CA2(max,teams):
∑

s∈slots
∑

n∈teams2(xtns + xnts) ≤ max+ vca2 for all t ∈
teams.

– CA3(max,intp,teams):
∑

n∈teams2
∑

r∈{s−intp+1,...,s}(xtnr +xntr) ≤ max+

vca3s for all t ∈ teams, s ∈ S \ {0, . . . , intp− 2}.
– CA4(max,slots,teams1,teams2):

∑
(i,j)∈teams1×teams2,i6=j(xijs + xjis) ≤

max + vca4s for all s ∈ slots.
– GA1(min,max,slots,meetings): min+ vga1n ≤

∑
s∈slots

∑
(i,j)∈meet xijs ≤

max + vga1.
– BR1(max,slots,teams):

∑
s∈slots(b

h
ts+bats) ≤ max+vba1 for all t ∈ teams.

– BR2(max,slots,teams):
∑

s∈slots
∑

t∈teams(b
h
ts + bats) ≤ max + vba2.

– FA2(intp,slots,teams):
∑

a,p∈T\{t}
∑

p∈{0,...,s} xtap = hts for all t ∈ T,

s ∈ S; his − hjs ≤ intp + vfa2ij and hjs − his ≤ intp + vfa2ij for all s ∈
slots, (i, j) ∈ teams2, i < j.

– SE1(min,teams): |
∑

s∈S((s+ 1)xijs− (s+ 1)xjis)| ≥ 1 + min+ vse1ij for all

(i, j) ∈ teams2, i < j.

We wrote a python program to convert the XML description of the ITC-
2021 instances into the above model formulated in the modeling language
Zimpl [9], which then can generate an LP or MPS file. Zimpl automatically
reformulates the absolute value needed for SE1 into an integer linear formula-
tion.

As an objective, we minimize the sum over all violation counters multiplied
with their respective penalty values. This objective function is precisely the
one computed by the validator of the ITC-2021.

Variations: We experimented (to a minimal extent) with some variations of
the above model. We added an objective cutoff with the objective value of the
best known solution so far to improve the location of the analytic center as
described in Section 4. As far as we can tell, it didn’t hurt.

We also experimented with adding parts or even all of the odd-set con-
straints to push up the lower bound or increase feasibility. Apart from the
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LP solves getting slow due to the huge number of constraints, there was no
observable effect. Hence we discarded this approach quickly.

Another modeling variant we explored was to remove all soft constraints
to get a feasibility instance. We assumed that this might be useful to find
initial solutions, as due to the reduced number of constraints, we expected the
problems to solve faster. Unfortunately, the effect was not as pronounced as
we hoped for. We were only able to generate few initial solutions this way.

Furthermore, we also tried relaxing feasibility by changing the basic con-
straints from equal to one to less equal to one and penalized a non-sufficient
number of variables set to one in the objective. Also CPLEX [8] and Xpress [5]
offer such a procedure out-of-the-box, it is available via the feasopt and
repairinfeas command, respectively. This approach did not provide addi-
tional solutions.

We believe the last two ideas had little effect for the following reasons:
Most heuristics in a MILP solver are guided by the current LP solution. The
LP solution depends on the search tree, and the search tree is built depending
on the objective function. We observed that it was most effective to restart
the solution process frequently. Apparently, the objective was not guiding the
tree search towards better feasible solutions. Removing the objective as in the
two experiments above left the solver completely clueless in what direction to
go. Since the instances have comparatively few feasible solutions, hitting one
by chance proved to be unlikely.

Additionally, we observed that increasing the running time of an instance
only had a limited effect, i.e., only minor local improvements were happening,
and then the primal solution was stuck in a local optimum. A substantial
amount of change in the solution would be required for a major improvement
beyond this local optimum, i.e., a distant part of the search tree needed to be
explored. At the same time, MILP tree search algorithms tend to explore the
vicinity of the current search area first and avoid big jumps. Hence, restarting
worked reasonably well to overcome this behavior.

3 Repeated restarts and simulated annealing

In an initial step, we attempted to solve the problem formulation as given
in Section 2 using standard MILP solvers. We employed various solvers and
solver settings. This is for two reasons: Firstly, different solvers have different
strengths, so while some models might solve better with one solver, another
solver might be superior in another instance. Secondly, we aim at exploiting
the effect of performance variability [10].

Using our cluster facility, we ran each instance up to 25 times, using ei-
ther CPLEX, Gurobi [7], SCIP [1,6] or Xpress as a solver, using a time
limit of up to 12 hours. We varied the parameters between the runs, usu-
ally increasing the number of heuristic runs, setting an emphasis for feasi-
ble solutions, reducing the amount of cutting plane generation, etc. Further,
we altered the LP solver used for the initial relaxation. When available, we
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MILP. Try. Repeat. 5

used a solution polishing mode after a certain time. We also changed the
random seed parameter between runs. As an example, a typical setting for
Gurobi would be Seed=131313 TimeLimit=30000 ImproveStartTime=15000

Cuts=0 Method=3 Presolve=2 Heuristics=0.5

This way, we could gradually improve the best-known solution. Finally,
there were a few notoriously hard problems for which we needed better heuris-
tic methods to find a first feasible solution. We discuss this in the next section.

Note that we never used any specific settings for any of the instances. In
principle, they all went through the same loop of repeated solving by various
different solvers. The amount of loops depended on the solution quality. Simi-
larly, whether we applied heuristics methods to ignite the search depended on
whether our initial MILP searches came up with a feasible solution, but not
on any problem characteristics.

There were five instances where we failed to find any feasible solution de-
spite all efforts. After the contest, the ITC team provided us a sample solution
to one of these problems. With the knowledge of this initial solution, we were
immediately able to improve it.

Towards the end, we implemented a basic ad-hoc version of the simulating
annealing heuristics as described in [2]. Again, we used the best-known solution
as a start. The heuristic was able to improve this solution in several cases. We
used the resulting solution as starting solution for further MILP solver runs.

4 Analytic Center Objective and Feasibility Pump

Some of the strongest primal heuristics implemented inside MILP solvers are
improvement heuristics and depend on the knowledge of an initial solution
for the problem at hand. To a certain extent, this also holds for the main
branch-and-bound search.

In many cases, getting any feasible solution for a MILP problem is not too
hard; the complexity of the problem primarily lies in finding the optimal solu-
tion and, even more, proving its optimality. However, the ITC-2021 instances,
as typical for sport scheduling problems, are such that even getting an initial
feasible solution can be very challenging.

Therefore, we decided to employ two special, expensive start heuristic pro-
cedures. The first one is making use of an Analytic Center objective as de-
scribed in [4]. It replaces the objective function of a MILP by coefficients that
correspond to the analytic center of the polyhedron associated to the MILP.
Furthermore, we searched for initial solutions using a Feasibility Pump algo-
rithm, see, e.g. [3]. The variant we employed uses multiple integer reference
vectors in the projection step and is described in the thesis of Mexi [11]. Note
that both methods are available out-of-the-box for general MILPs. The Fea-
sibility Pump is available in source code on GitHub, while Analytic Center
Search can be run via a special setting of Xpress.

Using our MILP solver portfolio and the two described dedicated start
heuristics, we could find solutions for almost all ITC instances. The few with-
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6 Timo Berthold et al.

out a feasible solution and others for which we only saw a low-quality solution
were forward to the next step in our problem-solving scheme: massively parallel
MILP solving.

5 Massively parallel computations

As a third step, next to running a MILP solver portfolio and employing MILP
start heuristics, we utilized massive parallel MILP solving on a supercom-
puter. Therefore, we used the massively parallel MILP solver ParaXpress [17]
which has been developed by using Ubiquity Generator(UG) framework [14].
It builds on the FICO-Xpress Optimizer. From a massive parallelization point
of view, the latest version of ParaXpress has almost the same features as that
of ParaSCIP [16].

We ran ParaXpress on two HLRN IV supercomputers, Lisa and Emmy. In
HLRN IV, each compute node employs two sockets of an Intel Xeon Platinum
Processor 9242 and 362 GB of Memory, and each job uses 128 or 256 nodes
(12288 or 24576 cores, respectively). ParaXpress runs a single controller pro-
cess called LoadController and ten of thousands of solver processes that solve
(sub-)MILPs, each running on a single core. We executed each job with a time
limit of 12 hours. Jobs could be interrupted. Altogether, we spent more than
seven million core hours.

We show the principal procedure in Algorithm 1. Note that initially, the
set I contained selected instances that we thought were most suitable for a
supercomputing approach.

More precisely, we conducted a large scale racing [18,15], in which all
Solvers in ParaXpress run Xpress with different parameter settings indepen-
dently, but incumbent solutions found are shared to cut off search trees.

When there is a new incumbent solution for an instance, a new job to
restart the solving process with the incumbent solution is created. We submit-
ted almost all jobs with 12,287 Solvers; only a few ran with 24,576 Solvers. We
also tried to solve instances that could not find improved solutions with differ-
ent ways of running ParaXpress, such as a general parallel Branch-and-bound
method provided by UG, rather than a racing search. Note that ParaXpress
could solve some of the instances to proven optimality.

6 Results and Conclusion

Table 1 shows our final results. For two instances, we were able to prove
optimality of the solution. We could show that 36 of the 45 instances need
to violate some of the soft constraints, given that the MILP solver proved
a positive lower bound for them. Our results are not exhaustive. We mainly
stopped due to the deadline. However, the progress noticeably slowed down.

The catch of our approach is that it did not use any special purpose schedul-
ing algorithm. All methodology is general MILP technology, available indepen-
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Algorithm 1: Massive parallel computation procedure

Data: Let I be the set of pairs of instances and its incumbent solution (I,x).
Result: Updated I.

1 NoImprovedSol := ∅. // indicate instances with no improved solutions
2 SubmittedJob := ∅. // indicate instances for submitted jobs
3 while The due date has not reached do
4 while I 6= ∅ do
5 Select (I,x) and I := I \ (I,x).
6 Submit a job to solve I by ParaXpress with MIP start x
7 (Method: large scale racing).
8 SubmittedJob := SubmittedJob ∪ (I,x).

9 while terminated job exists do
10 Remove (I,x) from SubmittedJob := SubmittedJob \ (I,x) .
11 if Improved soluiton x∗ was found for (I,x) then
12 I := I ∪ (I,x∗)

13 else
14 NoImprovedSol := NoImprovedSol ∪ (I,x)

15 while Enough computing resources are available and NoImprovedSol 6= ∅ do
16 Select (I,x) and NoImprovedSol := NoImprovedSol \ (I,x).
17 Submit a job to solve I by ParaXpress with MIP start x
18 (Method: large scale parallel Branch-and-Bound).
19 SubmittedJob := SubmittedJob ∪ (I,x).

Table 1 Submitted results. Bold indicates the objective value is proven to be optimal. Italic
indicates a zero lower bound. For all other instances a positive lower bound was proven.

Instance no. Early Mid Late

01 804 — 2068
02 402 — 5525
03 1246 9700 3069
04 764 7 0
05 — 413 —
06 5506 2270 1212
07 6881 2991 2525
08 1409 174 1454
09 122 810 790
10 — 1813 2544
11 6843 3367 305
12 1025 1538 5669
13 360 1051 3877
14 25 1679 1433
15 4616 1614 40

dent of this work. Our main contribution was modeling the ITC-2021 problems
and the way to combine the different MILP-solving methods.

It became apparent that a dedicated scheduling heuristic to find initial
solutions would have been a helpful extension since finding an initial solution
was causing severe troubles for some of the models. Once we knew an initial
solution, the MILP technology could improve it to a satisfactory level in most
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cases. We conclude that our methodology could probably be well combined
with more problem-specific approaches. It would be interesting to see how
well such an integrated approach performed in practice.

For our research, the competition showed direct impact, as it was a great
test case for a new version of the feasibility pump heuristic [11], which could
compute feasible solutions for 33 of the 45 instances. Furthermore, given that
the number of cores available on single machines is constantly increasing, it
might be worthwhile to incorporate a restart mechanism similar to the one we
scripted directly into the solvers. There are certain classes of problems where
this seems to work well. In a sense, this is similar to the idea of racing ramp-up,
which we employed for the massive parallel computations.

We will make the code to generate the MILP model instances publicly
available through the ITC organizers.

Acknowledgements The work for this article has been conducted within the Research
Campus MODAL funded by the German Federal Ministry of Education and Research (fund
number 05M14ZAM). The work was supported by the National High Performance Comput-
ing Center at the Zuse Institute Berlin (NHR@ZIB). We are grateful to the supercomputer
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Abstract We describe a method for finding solutions to the instances pro-
vided by the International Timetabling Competition, edition 2021.
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1 Introduction

The International Timetabling Competition (ITC) is a competition where par-
ticipants are asked to solve instances of a particular type of timetabling prob-
lems. In the 2021 edition [4], the instances originate from the domain of sport
scheduling. The aim of this note is to describe the method that we have used
to find solutions for the instances provided by the 2021 edition of the ITC.

There are many types of scheduling problems within the realm of sport
scheduling, however the ITC focused solely on the scheduling of so-called Dou-
ble Round Robin (DRR) tournaments. In a DRR tournament each team plays
each other team twice, once at home and once away. The matches are dis-
tributed over different rounds or slots, such that each team plays at most one
match per round. When the number of teams (N) is even, it is possible to
schedule a DRR using 2N − 2 rounds, implying that each team plays exactly
once in each round. The resulting schedule is then called compact, as it uses
the minimum number of rounds needed to schedule all the matches. A compact
DRR is a very popular format used in many sports; for instance, most national
soccer leagues are organised as a compact DRR. As the instances provided by
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the ITC ask for compact DRRs, we focus here exclusively on finding compact
schedules.

Literature Review

There is a growing amount of papers dealing with all kinds of problems in
sport scheduling. Results on the complexity of finding round robin sched-
ules can be traced back to Easton [5], see also Briskorn et al. [3], and Van
Bulck and Goossens [12]. Integer programming formulations have been stud-
ied, among others, in Briskorn and Drexl [2]. For more general information
concerning sport scheduling, we refer to well-known surveys by Rasmussen and
Trick [11] and Kendall et al. [8]; a bibliography is maintained by Knust [9].
When scheduling a league in practice, many different real-life aspects may
turn up, see Goossens and Spieksma [6] for an overview devoted to European
soccer leagues. The instances provided by the ITC feature many practical
side-constraints; in fact, we discuss the properties of a schedule as required by
the 2021 ITC in Section 2, and we call the problem of finding such a schedule
ITC-DRR. In Section 3 we describe our method, and in Section 4 we give the
results.

2 Requirements of a ITC-DRR Schedule

Ultimately, the quality of a schedule depends on the preferences of the organ-
isers. It is a fact, however, that there are reoccurring themes that often need to
be taken into account when devising a high-quality compact DRR schedule. In
Section 2.1, we specify our notation and phrase the problem, and in Section 2.2
we discuss the type of hard and soft constraints present in the instances of the
ITC.

2.1 Notation

We use T for the set of teams, S for the set of rounds; thus we have |T | = N
and |S| = 2N − 2. A match is an ordered pair (i, j) ∈ T × T , i 6= j, where
team i plays Home and j plays Away. For each match, there should be a round
r ∈ S where this specific match occurs and in each r ∈ S, team i ∈ T should
play exactly one match.

All other constraints that occur, tend to be specific for a team or a subset of
teams, and applicable to a subset of the rounds, see Section 2.2. Constraints are
either so called hard constraints, or are soft constraints. The hard constraints
need to be satisfied; for the soft constraints, a penalty for every (unit of)
violation is given. The objective is to find a schedule that satisfies all the hard
constraints and minimises the total sum of the penalties induced by the soft
constraints; we refer to this problem as ITC-DRR.
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2.2 On the variety of constraints in the ITC instances

We describe different types of constraints that are present in the ITC instances.

2.2.1 The type of DRR

It is quite natural to organise the DRR such that each pair of teams meets
once in the first half of the schedule (i.e., in the first N − 1 rounds), and
once in the second half of the schedule (i.e., in the last N − 1 rounds); this is
called phased. A phased competition can be regarded as two consecutive Single
Round Robins (SRR).

Apart from being phased or not, most competitions require that the rounds
where the match (i, j) and its return (j, i) for i, j ∈ T is played, are separated
by a given minimum number of rounds. When this minimum number of rounds
equals N−1 for all the matches, the second half of the season is the complement
of the first half of the season, and the resulting DRR is called mirrored.

2.2.2 Constraints concerning Home Away Patterns (HAPs)

Consider, for a given team, the series of 2N − 2 home and away matches: we
call the resulting pattern the Home Away Pattern (or HAP) of that team.
When a team plays two matches in consecutive rounds either both home or
both away, this is called a break. In many applications, breaks are seen as
unfavourable for the team and their occurrence should be minimised.

More generally, it is quite common to demand that the home-away pattern
according to which a team plays is balanced for certain sets of rounds. For
instance, it is very common to demand that each team starts its first two
rounds with a home match and an away match, and also plays in its last two
(and even four) matches once at home and once away (twice at home and
twice away). In addition, even when the DRR is not phased, one can demand
that after N − 1 rounds the number of home matches played by each team is
either bN−12 c or dN−12 e.

To ensure favourable break-patterns, schedulers often use a so-called First-
Break-Then-Schedule approach, which goes back to Nemhauser and Trick [10].
In such an approach, first the home away patterns are fixed, and then the
matches are determined consistent with the given HAPs.

2.2.3 Constraints concerning matches

In practice, not all matches are treated equally: matches between top teams
are subject to much more attention than other matches. As a consequence,
finding the appropriate round for such a match can be an important factor in
the quality of a schedule. For instance, many leagues feature so-called Super
Sundays: rounds where 4 or 6 top teams play matches amongst them. Find-
ing the ideal round for such a Super Sunday is important. In addition, some
matches should not be played in certain rounds: a match between top teams
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should not be played in the last round (for risk of not being relevant anymore).
Further, one can imagine, in the context of soccer leagues, that qualification
for other tournaments have an impact on the rounds where particular matches
should be avoided.

It is also very common to strive for a balance in the strength of consecutive
opponents, especially in the first 4 or 6 rounds. Indeed, it is considered quite
unfavourable to have to play against 3 top teams in a row, whether or not at
home or away.

3 Solution process

In principle, the ITC-DRR problem can be modelled as a compact mixed-
integer program (MIP), which can be solved by a black-box MIP solver. In
practice, however, state-of-the-art solvers fail to solve instances even with a
small number of teams within weeks. For this reason, we suggest a heuristic
approach to find solutions satisfying all hard constraints of ITC-DRR and that
aims to minimise the violation of soft constraints. Our approach consists of
three phases:

1. constructing a schedule S for a compact phased double-round robin tour-
nament;

2. turning S into a schedule S′ adhering to all hard constraints;
3. starting from S′, searching for a schedule that violates less soft constraints

while still satisfying all hard constraints.

We use an explicit rule to construct the initial schedule S in Phase 1, whereas
Phases 2 and 3 make use of procedure that alternates between solving a MIP
and using a local search algorithm to find better solutions. In the following,
we describe the details of these three steps.

3.1 Finding an Initial Schedule

To construct the initial schedule S, we use the circle method [1] to create
a schedule for a compact single-round robin tournament. This tournament
is then duplicated where the home-away status of each match is flipped. By
combining these two single-round robin tournaments a compact and phased
double-round robin tournament is found.

Note that S is only guaranteed to satisfy the compactness constraint of
ITC-DRR. If S violates some hard constraint, we enter Phase 2; otherwise, we
directly continue with Phase 3.

3.2 Finding Improving Schedules

In both Phase 2 and 3, our aim is to find schedules that improve on the
initial schedule S or S′, respectively. To quantify the quality of a solution,
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we introduce a function f that measures the violation of hard constraints
(Phase 2) or soft constraints (Phase 3) by a schedule. Moreover, violations of
hard constraints are not permitted in Phase 3. Our goal is to find a schedule
that minimises the value of f . As mentioned above, we search for such a
schedule by an alternating procedure whose components are described next.

3.2.1 Local Search

Januario et al. [7] discuss how schedules for compact single-round robin tour-
naments can be encoded in an edge-coloured complete undirected graph. The
vertices of the complete graph correspond to the teams and edges encode pos-
sible matches. Rounds of the matches are distinguished by assigning each edge
a colour, i.e. the edges of each colour class form a perfect matching.

To find better schedules, they discuss a local search algorithm on such
colourings. The idea of this algorithm is that one schedule can be turned
into another by the following procedure: Starting with two vertices (teams)
i, j ∈ T one can select a set of colours (rounds) c0, c1, . . . , cp−1 ∈ S that induce
p disjoint paths C0, . . . , Cp−1 where path Ck is a path from i to j alternating
over the coloured edges ck and ck+1 (mod p). Then, one can re-colour the edges
by interchanging the alternating colours on each path. If the paths are disjoint,
then the obtained edge-coloured graph is again a valid encoding for a schedule.

The concept of this neighbourhood for single-round robin tournaments can
be generalised to double-round robin tournaments by replacing every edge in
the graph by two anti-parallel arcs that can be coloured independently. That
gives an arc-coloured complete directed graph, where the vertices correspond
to the teams and the arc colours correspond to the rounds. The set of disjoint
paths in the single-round robin case now translates to a set of arc-disjoint
paths where it is permitted to traverse arcs in either direction, see Figure 1
for an example.

In the local search part of our procedure, we iterate over the possible
disjoint paths, starting by checking small neighbourhoods: the sets of colours
(rounds) of size 2. Once all possibilities are checked for all pairs of teams,
this number of colours is increased. In each iteration we check the change of
the objective, and based on this change we decide to accept the solution and
restart, or to reject the solution and continue to the next iteration. We do
this in a simulated annealing fashion, i.e. we also allow to continue with worse
solutions with a certain probability. To ensure feasibility in Phase 3, solutions
that violate hard constraints are never accepted. Finally, we terminate the
procedure after a certain time limit and continue with the MIP approach.

3.2.2 MIP Approach

To improve on the schedule found by local search, we use a MIP model. Its main
variables are xi,j,r ∈ {0, 1}, where i, j ∈ T (i 6= j) and r ∈ S. This variable
indicates that match (i, j) takes place in round r. The variables hbi,r, abi,r ∈
{0, 1} represent the home-break or away-break status of team i on slot r ∈ S,
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(b) After re-colouring.

Fig. 1: An example of two neighbouring solutions using the colour-cycle
(purple,blue, black) between team 3 and 6. The alternating paths are: purple–
blue: (3, 5), (6, 5); blue–black: (2, 3), (6, 2); and black–purple: (4, 3), (4, 6).

respectively. These are used to model the constraints related to breaks. For
soft constraint class c ∈ C, we denote by dc,i the penality of violating the i-
th constraint in class c. The constraint penalty is denoted by pc, and the
model objective is to minimise the total penalty given by

∑
c∈C

∑
i∈c pcdc,i.

Each constraint is modelled by a set of linear constraints in a straightforward
fashion, such that the feasible region matches the description of the constraint
classes in the competition.

We use a fix-and-optimise matheuristic where we fix a (uniformly) ran-
dom subset of rounds to the current schedule, and optimise for the remaining
rounds. Given an initial feasible schedule, a random subset Ŝ ⊆ S is selected.
Next, the variables xijr for r ∈ S \ Ŝ are fixed to the value corresponding to
the initial solution, and the model is optimised. We have two parameters that
change depending on the behaviour of the model: A time limit and a sample
size. The same time limit parameter is used in the local search approach to
ensure that the time spent in both approaches is about equal. If the time limit
is reached while no improved solution is found, we increase the time limit and
possibly reduce the sample size. If an optimal solution is found within the time
limit, the random sample size is increased and the time limit is slightly de-
creased. Moreover, a solution limit is imposed. If multiple improved solutions
are found within the time limit, we stop the optimisation and continue with
another sample of rounds. In general, if after solving the MIP an improvement
is found, we restart the MIP-approach with a different sample. Otherwise we
go back to local search using the best schedule found so far as initialisation.
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4 Computational Experience

For the implementation we have used Python 3.8. The MIPs are solved using
Gurobi 9.1.0 with the gurobipy package. Table 1 compares the result of our
solution approach (LS+MIP) with the approach where the compact MIP of
Section 3.2.2 (MIP) is solved. The test set comprises the early test instances
provided by [4]. Each instance has a time limit of 24 hours. A dash denotes
that no feasible solution is found within the time limit. Observe that in most
cases the solution process with local search finds a better primal solution
than the compact MIP formulation. These results are found by using 4 cores
on machines with an Intel Xeon Platinum 8260 with 42.7GB of RAM per
instance.

Table 1: Computational results for the early instances comparing our method
(LS+MIP) to solving the compact mixed-integer programming formulation
(MIP) with a time limit of 24 hours per instance. Shown are the best primal
solutions, dual bounds, the time per phase of LS+MIP and the number of
iterations in LS and MIP.

LS+MIP MIP

Phase 2 Phase 3

Iterations Iterations

Instance Time(s) LS MIP Time(s) LS MIP Primal Primal Dual

Early 1 822 6 15 85578 72 75 619 1588 1.00
Early 2 453 4 12 85947 57 94 369 606 0.00
Early 3 490 4 15 85910 50 69 1212 1701 55.19
Early 4 86400 60 98 – – – – – 0.00
Early 5 86400 65 101 – – – – – 258.88
Early 6 46127 60 82 40273 35 60 4682 – 633.64
Early 7 2049 12 25 84351 51 89 7306 10153 1271.64
Early 8 10 1 0 86390 60 91 1588 1615 210.40
Early 9 54 1 0 86346 82 121 443 206 0.00
Early 10 86400 50 79 – – – – – 319.77
Early 11 1647 17 26 84753 61 94 6772 10841 329.43
Early 12 61723 36 77 24677 31 41 1130 1850 0.00
Early 13 525 4 15 85875 53 81 372 498 2.00
Early 14 76 1 5 86324 54 114 24 42 1.00
Early 15 577 5 13 85823 59 78 4779 6021 514.48
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1 Introduction

This paper presents the approaches used to solve the ITC2021 timetabling
problems [2]. The article is organized as follows. Problem description is given
in Section 2. Section 3 introduces the Baseline model that is MILP monolithic
formulation for scheduling problem. Section 4 describes the Patterns model
consisting of two optimization parts: possible patterns generation and assign-
ing patterns to the teams. Section 5 proposes the Patterns Mirrored model that
is based on the mirroring format of the some real-life competitions. Section
6 presents the most applicable model called the 2-Phased model that decom-
poses the problem into two consecutive parts: the first and the second round of
the competition. A combination of the Patterns and the 2-Phased approaches
is described in Section 7. Proposed models’ applicability for different types of
instances is considered in Section 8.
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2 Problem description

The input data is a set of settings and constraints of optimization problems
specified in the RobinX format [4] (although not all features and constraints
of this format were included in ITC2021 instances). All constraints are divided
into two types: hard and soft. Hard constraints can never be violated, while
maximum number of the soft constraints should be satisfied with respect to
their importance. The main goal of the work is to develop an algorithm for
scheduling a double round-robin tournament in which all hard constraints are
satisfied and the penalty for soft constraints is minimized.

On the other hand, constraints can be divided into the following groups:
capacity constraints (CA1,CA2,CA3,CA4), game constraints (GA1), break
constraints (BR1,BR2), fairness constraints (FA2) and separation constraints
(SE1). Capacity constraints regulate when teams play home or away in a spe-
cific group of slots. Game constraints are used to forbid or to force playing
specific games in certain slots. Break is a situation when a team plays two
consecutive games with the same home or away status. Break constraints are
used to manage the quantity of such situations. Nurmi et al. in [3] proposed
a measure of fairness of a sports competition called ”k-balancedness” which
requires the difference in played home and away games to be smaller than k
at any point of the season. There is no sign of FA2 constraints in all proposed
models, because FA2 requires a lot of additional variables and constraints. FA2
constraints are implicitly optimized by BR2 and hard CA3. As a result, there
are almost no violations of soft FA2 constraints in all instances. Separation
constraints are used to control the interval between two games with the same
opponents.

3 Baseline model

Baseline model is a full MILP formulation of the ITC2021 problem. This model
considers a binary decision variable zs, t1, t2 that is equal to 1 if team t1 plays
at home against team t2 on time slot s and 0 otherwise. The model is based
on [4], where authors mathematically formulated all constraints following the
RobinX data format. Some constraints in [4] were nonlinear, therefore, stan-
dard linearization techniques were used in the Baseline model.

This approach is developed for instances with the following properties:

1. small-sized problems;
2. problems without hard BR2 constraints;
3. problems without any type of SE1 constraints.

4 Patterns model

Breaks are one of the bottlenecks of the Baseline model, because they require
a lot of linearization constraints and decision variables, so we propose the
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Patterns model. The sequence of home and away games is called team’s home-
away pattern (HAP). The Patterns model consists of two optimization stages.

At the first stage we minimize the number of breaks in a competition using
hs, t binary decision variables which indicate that team t plays at home on
time slot s. Some constraints can be taken into account at this stage: total
number of home games for each team, total number of home teams on each
time slot, hard CA1 constraints, hard CA3 constraints and a subset of hard
GA1 constraints. The set of possible patterns contains the solution of the first
stage and all other patterns with zero or one break.

The second stage is similar to the Baseline model, apart from dealing with
breaks. It has additional binary decision variables qt, p which indicate that
team t follows HAP p from the set of possible patterns.

This approach is developed for instances with the following properties:

1. small-sized problems;
2. problems without any type of SE1 constraints;
3. problems where the biggest contribution to the objective function is

made by soft BR2 constraints.

5 Patterns Mirrored model

Some European football leagues use a mirrored competition format, where
the second half of the competition is identical to the first one with an inverted
home advantage. The Patterns Mirrored model uses both stages of the Patterns
model along with mirroring constraints. Mirrored format allows us to reduce
the problem size significantly, because the schedule of the second round is
completely defined by the schedule of the first. But with the mirrored scheme,
we considerably reduce the feasible region, so some instances can be infeasible
with this approach. Mirrored format automatically satisfied both separation
and phased constraints. Moreover, we should take into account the lower bound
on the number of breaks in the mirrored double round-robin tournament 3T−6
[1], where T is the number of teams in competition.

This approach is developed for instances with the following properties:

1. large-sized problems;
2. problems with any type of SE1 constraints.

6 2-Phased model

2-Phased model is the decomposition approach for the ITC2021 problem. The
idea is to divide the solution into two consecutive stages. At the first stage we
build the schedule of the first phase of competition. At the second stage we
schedule the second phase with respect to the solution of the first stage. Some
of the constraints can be independently divided into two rounds: CA3, BR2
and SE1. In Phase 1, we tighten mutual constraints (CA1, CA2, CA4, GA1,
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BR1) for having an opportunity to satisfy them while solving Phase 2. For
these constraints, max constant from the respective constraint is distributed
proportionally between two phases with respect to the number of slots of a
certain phase in constraint. Example for the competition with 18 teams:

Initial constraint CA2 (max = 2) with slots = {0; 1; 20; 21}
Generated the first phase constraint CA2 (max = 1) with slots = {0; 1}
Generated the second phase constraint CA2 (max = 1) with slots = {20; 21}

Besides, two special constraints are included in the first stage: if we have
a mandatory game between team 1 and team 2 in the second round of the
competition from GA1, then we know about their home-away status in the
first round and the set of possible first round slots for their game for satisfying
the SE1 constraint.

This approach is developed for instances with the following properties:

1. large-sized problems;
2. problems with any type of SE1 constraints;
3. problems, where the Patterns Mirrored model is infeasible.

7 Patterns 2-Phased model

The 2-Phased model could have trouble with satisfying the hard BR2 con-
straints, and may also incur high penalties in the objective function due to
the soft BR2 constraints. Combining the Patterns model and the 2-Phased
model into Patterns 2-Phased model can improve the results. The combined
model consists of all the features of the two models: generation of possible pat-
terns, and application of two consecutive phase models for assigning patterns
to the teams.

This approach is developed for instances with the following properties:

1. large-sized problems;
2. problems with any type of SE1 constraints;
3. problems with strong influence of break constraints.

8 Applicability

We can say that the model applicability area is a class of problems, where this
approach can find feasible solution in a reasonable time. Each model was de-
veloped to handle certain types of instances, but the scope of the approach can
be much larger. Models applicability is shown in Fig. 1. The Baseline model is
not applicable to large problems, instances with hard BR2 constraints, and in-
stances with SE1 constraints. Patterns model can be applied to problems with
hard BR2 constraints. Other models can be applied to any type of problem.

The general algorithm for solving each of the instances in the competition
can be described as follows:
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Fig. 1 Models’ applicability

Fig. 2 Best proposed model among 45 instances

1. Choose appropriate formulations to apply to the problem instance to
be solved depending on which constraints are present in the instance.

2. Solve the problem instance using the formulations selected in Step 1.
3. Select the best solution from the set of all produced solutions.

All instances from ITC2021 were solved according to the algorithm de-
scribed above. Fig. 2 shows the distribution of the best solutions provided by
the different formulations. It can be seen that the 2-Phased model is the most
applicable approach for solving ITC2021 instances. In 7 out of 8 unsolved in-
stances, the hard BR2 constraints could not be satisfied that is motivation for
future research.
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1 Introduction

We outline a model and method for solving the International Timetabling
Competition on Sports Timetabling (Van Bulck et al., 2021b). Our algorithm
generates a starting solution, and improves it using an adaptive large neigh-
bourhood search (ALNS) using several neighbourhood types. Each neighbour-
hood subproblem is solved using integer programming, classifying the over-
all approach as a matheuristic. Similar methods have been effective on other
classes of constrained scheduling problems (e.g. Pisinger and Røpke, 2007;
Lindahl et al., 2018).

During the competition we generated 3 best-known solutions, and another
17 best-known solutions afterwards by improving other contestants solutions.

2 Modelling & Solution Approach

Our approach initially defines a monolithic integer program (IP) model which
fully encodes the ITC2021 problem specification. The primary decision vari-
ables define the binary choice of assignment of a single game (ordered pair of
teams) to a slot in the double round robin.

These variables are sufficient to prescribe a solution, however to enable
modelling of the specified hard and soft constraints, we use two sets of auxiliary
variables. The first set represents whether a break has occurred for each team,
in each slot, for each game mode. The second set represents the magnitude
of violation for each soft constraint, which are used to define the objective
function.
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Neighbourhood Description

Slots Game-slot variables are free within a subset of slots
Teams Game-slot variables are free if both teams are within a subset of teams
Teams+ Game-slot variables are free if either team is within a subset of teams
Order Game-slot variables are free if this game or the reversed game is as-

signed to this slot in the current solution

Table 1 Neighbourhood types

This simple formulation is unlike most mathematical programs in the
sports timetabling literature, which tend to use a multi-stage approach (Ras-
mussen and Trick, 2008). For example, an initial stage to select allowable
home-away patterns, and a latter stage to build the full schedule.

For the instances in ITC2021, the monolithic IP we define can easily be
constructed in memory, with the largest instance (Early 15) represented with
28,171 variables, 23,842 constraints and 11.1 million nonzeros. However, the
problem structure makes this model intractable to solve to optimality.

2.1 Starting solution

To find a starting solution, we first attempt to solve the monolithic IP (termi-
nating after 8 hours), which may find a feasible solution. If not, we construct
a starting solution using a “canonical factorization” from de Werra (1981),
which minimises the number of breaks. This solution is guaranteed to sat-
isfy the challenging “BR2” constraint (maximum total number of breaks), but
is likely to violate other hard constraints and thus not be feasible. Using the
number of hard constraint violations as an objective function to be minimised,
we then employ a hill climbing heuristic. Specifically we try all pairs of swaps
between teams and slots (e.g. every assigned game for two teams are swapped).

2.2 Improvement Phase

From a starting solution, we iteratively apply an adaptive large neighbourhood
search (ALNS), where part of the solution is allowed to be modified while the
rest remains fixed. An IP is solved within this neighbourhood subproblem
which aims to minimise the number of hard or soft constraint violations, de-
pending whether the current solution is infeasible or feasible respectively. The
types of neighbourhood are shown in Table 1.

The selection of which neighbourhood type to use is treated as a multi-
armed bandit problem, and addressed using the Upper Confidence Bound
(UCB) method. Based on the results from all previous iterations on this
instance, the next neighbourhood type (“arm”) is chosen as that with the
greatest optimistic upper bound on its expected probability of improving the
solution (“reward”); see formula (2.10) from Sutton and Barto (2018). This
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balances between exploring options and exploiting those which have performed
well in previous iterations.

The size of the neighbourhood is also adaptive, based on the outcome
in the last iteration for this neighbourhood type. Except for the fixed-size
“Order” neighbourhood, the size is increased or decreased by 1 unit (i.e. a slot
or team) if the last iteration was solved within 5 minutes or if it terminated
on a 30 minute time limit respectively. Searching a larger number of small
neighbourhoods was found to be more effective than the opposite.

Within each iteration, the specific subset of slots or teams chosen for the
neighbourhood is determined based on a randomly selected unsatisfied con-
straint (hard or soft). This allows the neighbourhood to focus on assignments
which contribute to the total penalty of the solution. If the constraint is defined
over more slots or teams than required for the neighbourhood, a random sub-
set are chosen. In the converse situation, additional slots or teams are selected
at random.

2.3 Results

To solve instances in parallel, we used Google Cloud Platform both to run
our algorithm (Compute Engine virtual machines), and to maintain an online
database of solutions and attempts (BigQuery).

Over several days, we used 4 “c2-standard-30” virtual machine instances,
for a total of 10,686 vCPU hours (Google Cloud, 2021). Therefore, each of the
45 competition instances received an average of 237 vCPU hours, terminating
on the total time elapsed. This is approximately similar to 1-2 days of execution
on a standard consumer CPU (with 4 to 8 physical cores). All IPs were solved
using Gurobi 9.1.1, with the “MIPFocus” parameter set to 1.

Our full set of results are shown in Table 2. The objective values of our
best solutions during the competition are given in column “Us-ITC”, and the
best solutions from all teams in column “Best-ITC”. We were able to find a
feasible solution to 37 out of 45 instances, of which 3 solutions were the best-
known from all submissions (as marked with an asterisk). However, most of
our solutions have a notably higher objective than the best-known solutions.

After the competition, we tested the ALNS algorithm on the best-known
solutions from all teams, each for 4 hours on a consumer CPU (AMD Ryzen
5900HX). In 17 cases we were able to generate a new best-known solution,
with objective shown in column “Us-Post” of Table 2. These solutions are
available on the competition website (Van Bulck et al., 2021a). Of the 17
highly optimised starting solutions, 12 were provided by Team Saturn, 3 by
Team UoS, 1 by Team Udine and 1 by Team GOAL.

Finally, Figure 1 demonstrates the ALNS algorithm on the ‘Early 15’ in-
stance. Starting from a feasible solution obtained by solving the monolithic
model (with objective of 7,504), the ALNS algorithm reduces the objective
value to 4,667 over 1100 iterations. Only the 91 successful iterations and the
associated neighbourhood type are shown.
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Instance Objective
Us-ITC Best-ITC Us-Post

Early 1 666 362
Early 2 379 160 145
Early 3 1171 1012 992
Early 4 – 512 507
Early 5 – 3127
Early 6 4821 3352 3325
Early 7 7208 4763
Early 8 1191 1114 1074
Early 9 447 108
Early 10 – 3400
Early 11 6713 4436 4426
Early 12 925 380
Early 13 382 121
Early 14 106 4
Early 15 4667 3368 3362
Middle 1 – 5177
Middle 2 – 7381
Middle 3 11235 9701
Middle 4 7* 7
Middle 5 681 413
Middle 6 2026 1125 1120
Middle 7 3317 1784 1783
Middle 8 277 129
Middle 9 1315 450
Middle 10 2370 1250
Middle 11 3143 2511 2446
Middle 12 911* 911
Middle 13 1044 253 252
Middle 14 1704 1172
Middle 15 1401 495 485
Late 1 2406 1969 1922
Late 2 – 5400
Late 3 2900 2369
Late 4 0* 0
Late 5 – 1939 1923
Late 6 1310 923
Late 7 2805 1558
Late 8 1252 934
Late 9 1343 563
Late 10 – 1988 1945
Late 11 376 207 202
Late 12 5542 3689 3428
Late 13 3099 1820
Late 14 1714 1206
Late 15 80 20

Table 2 Full Results Fig. 1 ALNS Iterations for Early 15
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3 Conclusion

Our algorithm performed adequately given its relative simplicity and modest
execution time. The method to generate a starting solution was particularly
simple, and consequently often could not provide a feasible solution to the
ALNS algorithm. Notably, the 8 unsolved instances all include a phased tour-
nament and a hard “BR2” constraint, which add dependencies across the entire
solution and are hard to control with the defined ALNS neighbourhood types.

However, when operating on feasible solutions, the ALNS method was able
to rapidly improve most solutions an appreciable amount. This led to us find-
ing 3 best-known solutions during the competition, and 17 more after the
competition, by improving the solutions from other teams.

The ALNS algorithm could likely be further sped up, as less than 10%
of neighbourhoods found an improved solution. This suggests an opportunity
for a more targeted choice of neighbourhoods, whether derived analytically or
with online learning. The ALNS method could additionally be hybridized with
the conventional decomposition approaches in sports timetabling, which add
structured home-away patterns and multiple starting solutions.
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1 Introduction

This extended abstract briefly describes a fix-and-optimize heuristic for the
Fifth International Timetabling Competition (ITC2021), which considered a
challenging and realistic Sports Timetabling Problem. The ITC2021 problem
consists basically of the assignment of games to rounds in a double round-
robin tournament considering many constraints. An even number N of teams
is considered, meaning there is a total of 2N−2 rounds with every team playing
exactly once at each round. In total, the ITC2021 problem imposes up to
nine different constraints which represent common situations in the real-world.
Two types of constraints are considered: hard constraints (H), which must be
satisfied at all times, and soft constraints (S), whose violation is penalized in
the objective function. The nine different constraints were categorized into five
groups by ITC2021 organizers and described by Van Bulck et al. (2021) as:

1. Capacity constraints (CA): force a team to play home or away and
regulate the total number of games played by a team or group of teams.

2. Game constraints (GA): enforce or forbid specific assignments of a game
to rounds.

3. Fairness constraints (FA): prevent an unbalanced timetable concerning
home games, travel distances, etc.
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4. Break constraints (BR): regulate the frequency and timing of breaks in
a competition; we say that a team has a break if it has two consecutive
home games, or two consecutive away games.

5. Separation constraints (SE): regulate the number of rounds between
consecutive games involving the same teams.

As with most international challenges, a diverse set of benchmark instances
was proposed. This is a particularly relevant contribution in the field since most
papers addressing similar problems report case studies, resulting in limited
comparison among different authors. The availability of benchmark instances
may reduce this issue. For further details concerning the ITC2021 problem
and the proposed instances, we refer the reader to Van Bulck et al. (2021).

2 Proposed algorithm

We initially formulated the ITC2021 problem as an integer program with three-
indexed decision variables xi,j,k, which take value 1 if game (i, j) is assigned
to round k and 0 otherwise. However, as expected, most of the benchmark
instances resulted in models which commercial solvers were not capable of
solving within the runtime limit of 10 hours. While this result clearly moti-
vated us to employ heuristics, the proposed integer programming formulation
remained as one of the main components of our proposed algorithm, which
may be categorized as a matheuristic.

Matheuristics are heuristics that take advantage of the power of mathe-
matical programming (MP) solvers to tackle hard combinatorial optimization
problems. More specifically, fix-and-optimize algorithms are matheuristics that
iteratively employ a mathematical programming solver to optimize a small
sub-problem while the remainder of the problem is fixed.

Algorithm 1 presents the proposed approach. Note that this algorithm is
executed twice: first to obtain a feasible solution and then to optimize (im-
prove) this solution. In the first execution, an initial solution is given by the
the Polygon Method (Ribeiro and Urrutia, 2007). For the second execution,
the feasible solution obtained in the first execution is given as input. Lines 1
and 2 load the MP model, initial solution and decision variables. Note that
hard constraints are modelled as soft constraints in the first execution. Stop-
ping criteria consist of a time limit or proven optimality (line 3). The solution
is optimal if it has zero cost or if its sub-problem size matches the size of the
problem and solver status is optimal. Lines 4 to 17 select the variables to be
optimized at each iteration. We considered two ways of releasing variables:
neighborhood NR, which randomly selects n rounds to be optimized (lines 6
to 11), and neighborhood N T , which randomly selects n teams to be optimized
(lines 13 to 17). To allow venue exchange, in neighborhood NR we also release
the variable related to the inverse venue game of games that occur in one of
the selected rounds (line 10). Line 18 fixes the non-selected variables to their
current value. Line 19 solves the MP model while line 20 releases the variables
for the next iteration. Finally, lines 21 to 24 adjust the sub-problem size.
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Algorithm 1: GOAL Solver
Input: (i) Problem instance P; (ii) Initial solution s0; (iii) Sub-problem size n;

(iv) Time limit tmax; (v) Iteration time limit tit
Output: (i) Best solution s found.

1 M← Load mathematical model for P
2 X ← Load variables of M with solution s0
3 while elapsed time ≤ tmax and optimal solution has not been found do
4 V ← ∅
5 if Random() ≤ 0.5 then
6 rounds← 0
7 while rounds < n do
8 r ← Randomly select a non-selected round from P
9 V ← V ∪ Variables related to round r

10 V ← V ∪ Variable related to the inversed venue game of the ones that
occur in round r

11 rounds← rounds + 1

12 else
13 teams← 0
14 while teams < bn/2c do
15 t← Randomly select a non-selected team from P
16 V ← V ∪ Variables related to team t
17 teams← teams + 1

18 Fix variables X \ V to their current value
19 (s, status)← Solve M with time limit tit
20 Release fixed variables in M
21 if status = Optimal then
22 n← n + 1

23 else
24 n← n− 1

25 return s

3 Preliminary experiments

The proposed approach was implemented in Java 16. Gurobi 9.1 (Gurobi Op-
timization, LLC, 2021) was employed to solve sub-problem formulations. The
computational experiments were executed on an Intel® Xeon E5620 2.40GHz
with 120GB RAM running CentOS Linux 7. Each sub-problem runtime limit
was set to 100 seconds, while initial sub-problem size n was set to 10, meaning
10 rounds for NR and 5 teams for N T . We run the experiments with a 24-hour
time limit. Table 1 presents the best solutions found by our solver along with
the best known solutions (BKS) among all submitted by the 13 teams that
participated in ITC20211. For instances in which we could not find feasible
solutions, hard (H) and soft (S) costs are displayed as H S. Solutions marked
with a ~ are proven optimal.

1 Reported at https://www.sportscheduling.ugent.be/ITC2021/instances.php
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Table 1 Best solutions found by the proposed approach for ITC2021.

Instance Our Best BKS Instance Our Best BKS Instance Our Best BKS
Early1 421 362 Middle1 5 6039 5177 Late1 2073 1969
Early2 309 160 Middle2 13 7232 7381 Late2 4 6346 5400
Early3 1146 1012 Middle3 9837 9701 Late3 2474 2369
Early4 2 1738 512 Middle4 ~ 7 7 Late4 ~ 0 0
Early5 13 4631 3127 Middle5 543 413 Late5 12 2402 1939
Early6 4088 3352 Middle6 1630 1125 Late6 1082 923
Early7 6434 4763 Middle7 2394 1784 Late7 2333 1558
Early8 1064 1064 Middle8 200 129 Late8 1165 934
Early9 538 108 Middle9 1050 450 Late9 1219 563
Early10 7 4963 3400 Middle10 1537 1250 Late10 13 3559 1988
Early11 5127 4436 Middle11 2798 2511 Late11 361 207
Early12 890 380 Middle12 1007 911 Late12 4786 3689
Early13 331 121 Middle13 430 253 Late13 1820 1820
Early14 84 4 Middle14 1682 1172 Late14 1562 1206
Early15 4196 3368 Middle15 1089 495 Late15 160 20

4 Conclusions

We briefly presented a two-neighborhood fix-and-optimize approach for the
ITC2021 Sports Timetabling Problem. Limited attention has been given to
fix-and-optimize methods for Sports Scheduling in the literature, despite the
strong results obtained by such methodology when considering other schedul-
ing problems. Preliminary experiments resulted in feasible solutions for 37 out
of 45 instances. We found the best overall solution for 4 instances and proved
optimality for 2 of them. These are encouraging results given the difficulty
of the problem: even finding feasible solutions is already a challenge for some
instances.

We believe there is still room for improvement in the proposed approach.
Smarter ways of selecting sub-problems may be proposed; integration with
usual heuristic neighborhoods can be explored; and parameter tuning may
improve the algorithm’s overall performance. Moreover, this approach can
heavily benefit from improved formulations. First-break-then-schedule or first-
schedule-then-break decompositions may be incorporated as well.
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Abstract This paper considers the problem of assigning matches to time slots
in a double-round robin sports tournament. An integer linear programming
(ILP) model is developed which includes a variety of hard and soft constraint
that are likely to be encountered when scheduling professional football/soccer
league fixtures. The solution methodology used is a matheuristic that fixes a
large number of variables in the ILP model at each iteration to enable a solu-
tion to be generated relatively quickly. In this fix-and-relax approach, different
methods are used to determine which variables are to be fixed. Computational
results are given for the instances having 16, 18 and 20 teams that form an
international timetabling competition on sports timetabling (ITC2021). The
main findings are that the matheuristic finds solutions for most ITC2021 in-
stances relatively quickly with all hard constraints satisfied, and generates
many best-known solutions for these instances.
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1 Introduction

Research on designing algorithms for scheduling sports competitions has taken
place for almost fifty years, although interest in this research topic has in-
creased during the last twenty years. For an overview of the major contribu-
tions, we refer to Knust [5]. In this paper, we address the scheduling of dou-
ble round-robin tournaments of the type used in many European and South
American football/soccer leagues where each team in the competition plays
one home game and one away game against every other team. Goossens and
Spieksma [4] provide an overview of the structure of the main football leagues
in Europe. As pointed out by Van Bulck et al. [6], most publications focus on
designing an algorithm that is suited to the constraints imposed by a particu-
lar league. As a consequence, computational work assessing the relative perfor-
mance of such algorithms is scarce. This has motivated a unified data format
for round-robin sports timetabling by Van Bulck et al. [7] that facilitates the
comparison of algorithmic approaches. It has also motivated the International
Timetabling Competition on Sports Timetabling, named ITC2021 [8], that
“aims to stimulate the development of solvers for the construction of round-
robin timetables”. This paper reports on the solver developed by the authors
for the double round-robin sports scheduling problem (DRRSSP), and pro-
vides computational results in the form of objective function values for the 45
instances on which the result of ITC2021 is based.

The double round-robin tournaments of ITC2021 are compact, meaning
that in each time slot every team has exactly one match. We distinguish
between phased and unphased double round-robin tournaments. In a phased
tournament, the matches played in the first half of the slots comprise a single
round-robin tournament, and similarly for the matches in the second half of
the slots, whereas an unphased tournament has no such constraints on the
matches. A break occurs if a team plays at home in some slot having played
at home in its previous slot (home break), or if a team plays away in some slot
having played away in its previous slot (away break).

There are different classes of constraints on the DRRSSP. These arise due
to the interests of multiple stakeholders. The football clubs competing in a
tournament are concerned about maximizing revenue by having their home
matches being played in slots when more fans are likely to be able to watch the
game. They also prefer schedules in which home and away matches alternate,
thereby reducing the number of breaks. Teams that use the same stadium
clearly create constraints, and other events occurring within the vicinity of
the stadium in certain time slots may prevent a home match being assigned to
these slots. The police are responsible for safety outside of the ground, which
may impose constraints on the number of teams playing in the same city in
the same slot. TV companies invest significantly in gain broadcasting rights to
the matches, and may prefer schedules having the most high-profile matches
spread throughout the season.

This aim of our study is to propose a new algorithm for creating sched-
ules for the DRRSSP, and to evaluate this approach on the 45 instances of
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the ITC2021 competition. In Section 2, we provide a formal description of the
DRRSSP that we are addressing, and Section 3 contains an integer program-
ming formulation of the problem. Section 4 describes our proposed matheuris-
tic, which takes the form of a fix-and-relax procedure. Computational results
obtained by applying our matheuristic to the 45 instances provided within
ITC2021 are presented and discussed in Section 5. Lastly, Section 6 contains
some concluding remarks.

2 Problem Description

For the DRRSSP, it is required to design a round-robin tournament that allo-
cates matches to time slots. However, Van Bulck et al. [6] observe from various
studies reported in the literature that there can be various constraints that
affect how the matches are scheduled.

Let n denote the number of teams competing in the double round-robin
tournament, where n is even. Further, let T = {1, . . . , n} be the set of all
teams. For each pair of teams i, j ∈ T , where i < j, there is match (i, j)
for which team i plays a home game against team j and a match (j, i) for
which team i plays an away match against team j. Thus, each team plays
n − 1 home games at its own venue and n − 1 away games at its opponent’s
venue. The tournament has a set S of time slots for the matches. We assume
that the minimum number of time slots is used so that S = {1, . . . , 2n − 2},
which produces a compact tournament. If the matches that are played in slots
1, . . . , n− 1 define a single round-robin tournament, then the matches in slots
n, . . . , 2n−2 also define a single round-robin tournament, and such a structure
is phased tournament. For a phased tournament, we define S′ = {1, . . . , n− 1}
to be the set of slots used for the first phase.

There are structural constraints that ensure that the matches assigned to
time slots satisfy the conditions of a double round-robin tournament, with
additional constraints added if the tournament is phased. However, there are
many other types of constraints within ITC2021, as listed below, which can
either be hard or soft.

Capacity constraints: within a given set of time slots, a team is forced to play
at home or away, and the total number of matches played by a team or by
a set of teams has an upper limit.

Game constraints: given a set of time slots and a set of matches, the number
of matches assigned to these time slots has an upper limit and a lower
limit.

Break constraints: within a given set of time slots, there is an upper limit on
the total number of breaks for a given set of teams.

Fairness constraints: within each of a given set of slots, there is an upper limit
on the largest difference in the number of home games played between each
pair of teams within a given set.
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Separation constraints: for a given set of teams, there is a lower limit on
the gap between home and away matches between each pair of teams in
this set.

A solution of the DRRSSP has, for each soft constraint, a non-negative
deviation that specifies the number of units of violation of the constraint.
Also, each soft constraint has an associated weight that represents the penalty
per unit violation of the constraint. The objective of the problem is to design
a double round-robin tournament in which all hard constraints are satisfied so
that the sum of weighted deviations for all soft constraints is minimized.

3 Integer Linear Programming Model

Our integer linear programming (ILP) model has variables and structural con-
straints that are widely used in round-robin sports scheduling, such as in the
study of Durán et al. [3]. The key parameters used in our ILP are the set of
teams T and the set of slots S, as defined in Section 2, with S′ representing
the set containing the first half of the slots.

The variables in our integer programming model that define the structure
of the tournament are

xijs =

{
1 if match (i, j) is played in slot s,

0 otherwise.
∀i, j ∈ T, ∀s ∈ S

However, some tournament specifications impose constraints on numbers of
breaks that are allowed. Thus, we introduce additional variables

bHA
is =

{
1 if i has a home or away break in slot s,

0 otherwise.
∀i ∈ T, ∀s ∈ S \ {1}

In some cases, it is necessary to differentiate between a home break and an
away break. Thus, if bHA

is = 1, then bHis = 1 or bAis = 1 depending on whether
a home break or an away break occurs for team i in slot s. Also, there is a
relationship bHA

is = bHis + bAis for all i ∈ T and s ∈ S \ {1}. Also, when there are
constraints on the separation in terms of the number of slots between the two
matches played by a pair of teams i and j, it is useful to introduce the variables

yij =

{
1 if match (i, j) occurs before match (j, i),

0 otherwise.
∀i, j ∈ T

The following subsections provide the classes of constraints that are in-
cluded in the model. There are some structural constraints given below in
Section 3.1 which must be satisfied in a double round-robin tournament. The
remaining constraints are non-structural.

Each non-structural constraint has an index by which it is identified. Asso-
ciated with most constraints c is a threshold value tc, which is the maximum
value that some linear combination of the xijs, b

H
is, b

A
is, b

HA
is and yij variables

can achieve without incurring a penalty. In such cases, the right-hand side of
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the constraint is set to tc + dc, which dc is an integer deviation variable for
constraint c. The remaining constraints c have a threshold value tc, which is
the minimum value that some linear combination of the xijs, b

H
is, b

A
is, b

HA
is and

tij variables can achieve without incurring a penalty. For these constraints,
the right-hand side of the constraint is set to tc − dc, which dc is an integer
deviation variable for constraint c. If a constraint c of either type is hard, we
introduce dc = 0 as a further constraint.

3.1 Structural constraints

The structural constraints on a double round-robin tournament ensure that
the variables are assigned values that create a valid tournament. The structural
constraints are all hard. The first set of constraints below ensure that within
each slot s team i either has a home game or an away game against some
other team j. The second constraints impose the condition that a match (i, j)
for each pair of teams i and j appears in exactly one slot. The third set of
constraints, which are applied only when the DRRSSP is phased, force all
pairs of teams i and j to play exactly one match in the first half of the time
slots S′, and consequently exactly one match in the second half of the time
slots S \ S′.∑

j∈T\{i}

(xijs + xjis) = 1 ∀i ∈ T, ∀s ∈ S (1)

∑
s∈S

xijs = 1 ∀i, j ∈ T (2)∑
s∈S′

(xijs + xjis) = 1 ∀i, j ∈ T (3)

The constraints linking the bHis and bAis variables with the xijs variables are∑
j∈T

(xijs + xi,j,s−1)) ≤ bHis + 1 ∀i ∈ T, s ∈ S \ {1} (4)

∑
j∈T

(xjis + xj,i,s−1) ≤ bAis + 1 ∀i ∈ T, s ∈ S \ {1} (5)

Further, the constraints linking yij with the xijs variables are∑
s∈S

s(xjis − xijs) ≤Myij ∀i, j ∈ T (6)∑
s∈S

s(xijs − xjis) ≤M(1− yij) ∀i, j ∈ T (7)

where M is a constant that satisfies the condition M ≥ |S| − 1.
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3.2 Capacity constraints

The DRRSSP has four types of capacity constraints. These sets of constraints
are denoted by CA1, CA2, CA3 and CA4.

There is a set CA1 = CAH
1 ∪ CAA

1 of home and away capacity constraints
of type 1. Each constraint c of CA1 is specified by a team ic, a set of slots Sc

and a threshold value tc. The home capacity constraint is

∑
j∈T

∑
s∈Sc

xijs ≤ tc + dci ∀c ∈ CAH
1 , i = ic (8)

while the corresponding constraints for c ∈ CAA
1 are identical except that xijs

is replaced by xjis.

The capacity constraints c of types 2 and 3 are each specified by a team
ic, a set of teams Tc and a set of slots Sc for type 2 constraints. Also, there
are constraints that refer to home games, away games, and home-away games
that are index by H, A and HA. Thus, the constraint sets are CAt = CAH

t ∪
CAA

t ∪ CAHA
t for types t = 2 and t = 3. The home constraints for type 2 and

type 3 are

∑
j∈Tc

∑
s∈Sc

xijs ≤ tc + dci ∀c ∈ CAH
2 , i = ic (9)

∑
j∈Tc

k+Ic∑
s=k+1

xijs ≤ tc + dci ∀c ∈ CAH
3 , i = ic, ∀k ∈ K (10)

where K = {0, . . . , |S| − Ic} and Ic is the length of an interval defining the
slots to be considered for type 3 constraints. The corresponding constraints
for c ∈ CAA

t and c ∈ CAHA
t for t = 2 and t = 3 are identical except that xijs

is replaced by xjis for away constraints and are xijs is replaced by xijs + xjis

for home-away constraints.

Type 4 capacity constraints are specified by two sets of teams Tc1 and
Tc2, and a set of slots Sc. The constraint set is CA4 = CAH

4 ∪ CAA
4 ∪ CAHA

4 .
Moreover, the home constraint set comprisesCAH

4 = CAH
4a∪CAH

4b where CAH
4a

and CAH
4b are defined by

∑
i∈Tc1

∑
j∈Tc2

∑
s∈Sc

xijs ≤ tc + dc ∀c ∈ CAH
4a (11)

∑
i∈Tc1

∑
j∈Tc2

xijs ≤ tc + dc ∀c ∈ CAH
4b, ∀s ∈ Sc (12)

The away, and home-away constraints are similarly partitioned, with the re-
placement of xijs by xjis and xijs+xjis, respectively, providing the constraints.
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3.3 Game constraints

The set of game constraints is denoted by GA. For each constraint c ∈ GA, a
set Sc of slots and a set Gc of games are specified. A game in which team i
plays at home against team j is denoted by (i, j). The constraints are

∑
(i,j)∈Gc

∑
s∈Sc

xijs ≤ tc + dc ∀c ∈ GA (13)

∑
(i,j)∈Gc

∑
s∈Sc

xijs ≥ t′c − dc ∀c ∈ GA (14)

where t′c is a lower limit on the number of games from Gc that are played in
the slots of Sc. For each c ∈ GA, there are lower and upper bound constraints,
although a positive dc value for one of these constraints implies that the other
constraint is satisfied as a strict inequality.

3.4 Break constraints

There are two types of constraints that limit numbers of breaks. The set of type
1 breaks is denoted by BR1 = BRH

1 ∪BRA
1 ∪BRHA

1 , where home breaks, away
breaks and home-away breaks are considered. Each type 1 break constraint c
specifies a team ic and a set of slots Sc. The home break constraints of type 1
are ∑

s∈Sc

bHis ≤ yc + dc ∀c ∈ BRH
1 , i = ic (15)

while the away and home-away break constraints of BRA
2 and BRHA

3 are of a
similar form.

A set BR2 specifies the type 2 break constraints. Each constraint c ∈ BR2

specifies sets Sc of slots Tc of teams. These type 2 break constraints are∑
i∈Tc

∑
s∈Sc

bHA
is ≤ tc + dc ∀c ∈ BR2 (16)

3.5 Fairness constraints

Fairness constraints aim to ensure that pairs of teams play approximately the
same number of home games at the end of selected slots. The set of fairness
constraints is denoted by FA. Each constraint c ∈ FA specifies a pair of teams
ic and i′c and a set of slots Sc. The constraints are

∑
j∈T

ŝ∑
s=1

(xijs − xi′js) ≤ tc + dc ∀c ∈ FA, i = ic, i′ = i′c, ∀ŝ ∈ Sc (17)
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3.6 Separation constraints

A set SE of separation constraints aims at avoiding the two matches between
a pair of teams being too close together. Each constraint c ∈ SE specifies a set
Tc from which the pairs of teams are selected. The constraints are

∑
s∈S

s(xijs − xjis) ≥ tc + 1− dc −Myij ∀c ∈ SE, ∀i, j ∈ Tc (18)

3.7 Objective function

Let C = CA1∪CA2∪CA3∪CA4∪GA∪BR1∪BR2∪FA∪SE be the set of all
the constraints in the problem, excluding the structural constraints defined in
Section 3.1. Let C = C̃ ∪ C̄ where C̃ is the set of soft and C̄ is the set of hard
constraints. Let wc be the given unit penalty for constraint c ∈ C̃. Then the
objective function can be written as

Min
∑
c∈C̃

wcdc (19)

Recall that we set dc = 0 for all c ∈ C̄ to guarantee feasibility.

4 Matheuristic

Our Matheuristic algorithm relies on the ILP model described in Section 3.
The instances created for ITC2021 are very challenging, and the ILP model is
unable to solve them with Gurobi (version 9.0) using reasonable computational
effort, mainly because of the size in terms of numbers of teams, soft constraints
and hard constraints. Therefore, the rationale in this study is to solve smaller
problems so that we can expect a competitive behaviour from the solvers that
are currently available.

The fix-and-relax matheuristic approach (also known as relax-and-fix) pro-
vides a framework for producing solutions for ILPs by solving a series of smaller
problems. These smaller problems are created by fixing many of the variables
and then solving the ILP for the variables that are not fixed. The early research
on fix-and-relax concentrated on lot-sizing problems and was initiated by Dil-
lenberger et al. [2]. More recently, fix-and-relax has been applied in sports
scheduling to the traveling umpire problem (TUP) by de Oliveira et al. [1].
In the traveling umpire problem, matches in a round-robin tournament are
specified as an input, and it is required to allocate an umpire to each match so
that the total distance traveled by the umpires is minimized. In the study of de
Oliveira et al., there are binary assignment variables that define the allocation
of umpires. The high-quality of the solutions obtained for the TUP suggests
that a fix-and-relax approach could be successful for our DRRSSP.
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One obvious strategy is to consider as a first step only the hard constraints
and check whether the ILP in which the soft constraints are ignored is solvable
with a reasonable amount of computational effort. However, we have identified
that this relaxation is not sufficient for the instances provided in the ITC2021
competition because there are no instances for which a feasible solution can be
obtained. Consequently, our proposed strategy is based on fixing a subset of
the variables to specific values, where the method of variable fixing takes into
account the features of the current solution. The other variables will remain
as decision variables, thereby producing a fix-and-relax approach. Based on
this idea, we introduce five different neighbourhoods to be used at the two
stages of our algorithm. In the first stage, we aim to find a feasible solution
ignoring the soft constraints, while the second stage considers the full model.
In the first stage we propose a Variable Neighbourhood Search (VNS), and in
the second stage we propose a Variable Neighbourhood Descent (VND) using
the same neighbouring structure but adding a multi-start feature.

We define ILPc to the constrained new ILP model in which we fixed some
of the variables to predefined values. We also denote by x̂ijs by the value
of each variable xijs in the current solution. In Section 4.1 we define the
neighbourhoods, while Sections 4.2 and 4.3 then explain the VNS and VND
approaches that are used in the corresponding stages of the algorithm.

4.1 Neighbourhoods

We use the following neighbourhoods (N1-N5). All of these neighbourhoods
are based on a fix-and-relax approach using the ILP, where several ILP models
are solved by Gurobi with a time limit imposed (in our experiments, we ran
tests with 30, 60 and 600 second per model).

N1 Slots. In this neighbourhood we select a subset of slots S̄ ⊆ S and then
we fix all the other slots as in the current solution, i.e, xijs = x̂ijs for all
i, j ∈ T and s ∈ S \ S̄. This neighbourhood requires a new parameter for
the algorithm, n1, which is the number of slots to be selected in S. We
perform as many iterations as constraints we have violated in the model,
and for each constraint violated we select the slots where there is any match
scheduled that contributes to the Left Hand Side (LHS) of the constraint.
We then randomly add other slots until n1 slots are chosen.

N2 Teams. In this neighbourhood, we select a subset of teams T̄ ⊆ T and
then we fix all the matches for all pairs of teams, except the pairs i, j ∈ T̄ ,
which remain as variables. Therefore, xijs = x̂ijs and xjis = x̂jis, ∀i ∈
T, j ∈ T \ T̄ , s ∈ S. As in N1, this neighbourhood also requires a new
parameter, n2s, which is the number of teams that will be considered in
T̄ . Similarly to N1, for each constraint we select in T̄ the teams that are
contributing to the left-hand side of the inequalities violated in the current
iteration. We then randomly add other teams until n2 teams are chosen.

N3 Rows and Columns. We select a subset of slots S̄ ⊆ S and a subset of
teams T̄ ⊆ T , and then we fix all the matches that are not scheduled on
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any slot in S̄ and both teams are not in T̄ , i.e, xijs = x̂ijs, ∀i, j ∈ T \T̄ , s ∈
S \ S̄. Slots in S̄ are selected in a similar way as in N1, but we select only
n1/2 slots, and also we always select 2 teams in T̄ , and these two teams
are always the ones contribute more towards the violation of the current
violated constraint being analysed.

N4 Phased (only for phased tournaments). We fix one half of the competi-
tion and we optimise the other half, i.e, we solve first the model where
xijs = x̂ijs, ∀s ∈ {1, . . . , |S|/2}, and then the model in which xijs = x̂ijs,
∀s ∈ {|S|/2 + 1, . . . , |S|}. We solve only two models every time we use this
neighbourhood.

N5 Home and away. In this neighbourhood, we allow home and away matches
between the same pair of teams to be swapped. Specifically, we fix xijs = 0,
for all i, j ∈ T and s ∈ S such that x̂ijs + x̂jis = 0. This neighbourhood
has no random selection, but the resulting model is generally challenging.
Thus, in our computer experiments, Gurobi rarely proves optimality, and
generally stops due to the time limit condition.

4.2 Checking feasibility - VNS (Hard only)

In this stage we consider the ILP where all the soft constraints except the
BR2 are ignored. If a feasible solution is found, it is then used for the second
stage (Section 4.3). A high-level pseudo-code is presented in Algorithm 1.

An initial solution where many of the constraints are violated is found by
solving the ILP model only with the structural constraints (see Section 3.1)
and ignoring all the other constraints. We refer to that solution as Sol0, which
generally has many other constraints that are violated. We then compute the
value of total deviation that corresponds to solution Sol0, and set F0 be that
value (line 2 Algorithm 1).

In line 7 we apply all the neighbourhoods until no improvement is found,
where we regard the solution as being a local optimum. In line 11, if the so-
lution is still not feasible, we then increase the coefficients in the objective
function of all the dc variables, with the exception of the BR2 (break 2 con-
straints), where we increase the coefficients of the bis variables in the objective

function if b̂is = 1. In lines 12-13 we check whether the solution is feasible.
For any dc variables that take a value of 0 but have a positive coefficient in

the objective function due to the previous iterations, we decrease their weight
by taking into account the slack of the corresponding constraint in the model.
If there is a positive slack then we decrease the current weight by one unit.

4.3 Optimising with soft constraints

In this stage we consider the full ILP model (with both hard and soft con-
straints), and the input is the final solution obtained by algorithm described
in Section 4.2. A pseudo-code is provided in Algorithm 2. We first reset all the
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Algorithm 1 VNS (Hard only)

1: procedure VNS(n1, n2) . n1 and n2 do not change in this part
2: Sol0 ← Compute initial solution (with objective function F0)
3: i← 0
4: while Improvement do
5: i← i + 1
6: Soli ← Sol0
7: Apply N1-N5 in Soli
8: if Improvement found then . with the current objective function being used
9: Update Soli

10: else
11: Change weights on the objective function

12: if Solution is feasible then
13: Stop and return feasible solution Soli

weights on the objective function as follows. The weight on the dc variables,
where c ∈ C̃ is given by the penalty of the constraints, and the weight of all
the other dc variables related to hard constraints is set to 100. We identified
that this value is sufficiently large to converge to better solutions without vio-
lating too many hard constraints, which may lead to difficulties on recovering
feasibility. However, this approach indeed allows to visit infeasible solutions
during the search process. Therefore, it is important to check that the solution
we check in line 10 of Algorithm 2 is indeed feasible.

We start with the objective function defined by the solution obtained by
the VNS (hard-only) algorithm, which corresponds to the actual penalty of
the solution. Next we apply the N1-N5 neighbourhoods until we obtain a local
optimum, at which stage we increase the two parameters of the algorithm, n1

and n2 (see Section 4.1) by one, until Gurobi cannot solve the model efficiently.
In some instances where there are not many constraints, the resulting ILP
models are easier to solve and, therefore, higher values for n1 and n2 are
explored (up to n1 = 30 and n2 = 14 in the best cases). For the larger or
more complex instances resulting in more challenging ILPs, the model becomes
intractable with n1 = 18 and n2 = 8.

After performing some computational experiments and exploring other
strategies, we found that developing a multi-start algorithm is able to pro-
duce the best quality solutions. We execute multiple runs (ns) with the same
initial solution (by introducing randomness in N1-N3) or by different initial
solutions obtained by the VNS (hard-only) algorithm.

5 Computational experiments

For the computational experiments we have used 2.6GHz Intel Sandybridge
processors, and each run was performed by 4 CPUs with 16GB of memory.
We have used Gurobi (version 9.0) to solve the ILP models and we run the
algorithm three times with 30, 60 and 600 second per model. In stage 1 of
the algorithm (VNS), we run the algorithm until a feasible solution is found.
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Algorithm 2 VND (hard + soft) - multistart

1: procedure VND(ns) . ns is the number of muti-start runs
2: for i = 1 . . . , ns do
3: Soli ← One random solution obtained from VNS (Hard only) (Algorithm 1).
4: n1 = 5 and n2 = 4
5: exploring = True
6: while exploring do
7: Apply N1-N5 in Soli
8: if Improvement found then . Objective function does not change
9: Update Soli

10: if best solution improved then
11: Update best solution

12: n1 = n1 + 1
13: if Gurobi cannot find feasible solution of the resulting ILP then
14: n1 = 5
15: n2 = n2 + 1
16: if Gurobi cannot find feasible solution of the resulting ILP then
17: exploring = False

18: Return best solution

At this stage we also considered adding the soft BR2 (break 2) constraints in
order to begin stage 2 with a solution that already has a low number of breaks.

The computation time needed to find a feasible solution is shown in the first
three columns of Table 1. It is worth highlighting that for almost all instances
it is relatively quick to find a feasible solution, although in some instances it
is more challenging and many iterations of the VNS are required to find a
feasible solution, especially the instance Middle 2.

In stage 2 of the algorithm (Section 4.3), for each run of the algorithm
we set ns = 60 (multi-start runs), and we initially set n1 = 8 and n2 = 6.
The computation time of one single run of the algorithm strongly depends on
the instance that we are solving, but the largest amount of time on a single
run was up to 6 days. Our best solutions obtained are reported in Table 1.
The instances solved are divided into three sets of 15 instances each (Early,
Middle and Late), which were released at different times during the ITC2021
competition.
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Table 1 Best results obtained by the proposed algorithm (VNS+VND) for the ITC2021
instances. The second column (TTF) represents the time to achieve feasibility (in hours)
and the third column (ITC2021) presents the best solution known for the instance at the
end of the competition. The last column presents the gap from the best VNS+VND solution
to the best known.

Instance TTF (h) VNS+VND ITC2021 Gap
Early

1 < 1 362 362 0%
2 < 1 222 160 28%
3 < 1 1052 1012 4%
4 < 24 536 512 4%
5 < 24 3127 3127 0%
6 < 1 3714 3352 10%
7 < 1 4763 4763 0%
8 < 1 1114 1114 0%
9 < 1 108 108 0%
10 < 72 3400 3400 0%
11 < 1 4436 4436 0%
12 < 1 510 380 25%
13 < 1 121 121 0%
14 < 1 47 4 91%
15 < 1 3368 3368 0%

Middle
1 < 24 5177 5177 0%
2 > 100 7381 7381 0%
3 < 24 9800 9701 1%
4 < 1 7 7 0%
5 < 1 494 413 16%
6 < 1 1275 1125 12%
7 < 1 2049 1784 13%
8 < 1 129 129 0%
9 < 1 450 450 0%
10 < 1 1250 1250 0%
11 < 1 2608 2511 4%
12 < 1 923 911 1%
13 < 1 282 253 10%
14 < 1 1323 1172 11%
15 < 1 965 495 49%

Late
1 < 1 1969 1969 0%
2 < 1 5400 5400 0%
3 < 1 2369 2369 0%
4 < 1 0 0 -
5 < 3 2218 1939 13%
6 < 1 923 923 0%
7 < 1 1652 1558 6%
8 < 1 934 934 0%
9 < 1 563 563 0%
10 < 3 2031 1988 2%
11 < 1 226 207 8%
12 < 1 3912 3689 6%
13 < 1 2110 1820 14%
14 < 1 1363 1206 12%
15 < 1 40 20 50%
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The proposed algorithm obtained the best results in 22 out of 45 instances
by the end of competition, and in further 7 instances the best known result is
within 6% of the solution obtained by the proposed algorithm.

6 Concluding remarks

In this study, we propose a novel matheuristic algorithm having two stages to
solve the DRRSSP. In the first stage, we address the feasibility problem by
using a VNS framework, where a second stage we optimizes the soft constraint
violations by using a multi-start algorithm with a VND. Both the VNS and
the VND use the same neighbourhood structure that combines five different
neighbourhoods. The results obtained shows that both stages of the algorithm
perform well, being able to prove optimality in one instance (Late 4, with an
objective value of 0) and finding a feasible solution in all 45 instances of the
ITC2021 challenge competition.
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1 Introduction

Sport timetabling is an active research field, mainly due to the commercial interest in the maximiza-
tion of fan attendance (in person or remotely) to sport events. Among the various possible structures
for sport competitions, the round-robin tournament is the most frequently used for most team sports.

We describe in this paper the solver that we developed for the Sport Timetabling Competition
ITC2021, a three-stage Simulated Annealing approach, that makes use of a portfolio of six different
neighborhoods. Five of them are classical ones, already proposed in the literature, whereas the sixth
one, named PartialSwapTeamsPhased, is a variant of one of them that we specifically designed to
deal with phased instances. Our solver has many parameters and it has been tuned using the F-
RACE procedure (Birattari et al., 2010), upon a set of experimental configurations designed using
the Hammersley point set (Hammersley and Handscomb, 1964).

Overall, the final outcome is that the three-stage Simulated Annealing solver is able to find a
feasible solution on 44 out of 45 instances and ranked second in both the first competition milestone
and the final round.

2 Related Work

Interest in Sport Timetabling started growing from the 70s, with initial research by Gelling (1973),
Russell (1980), Wallis (1983), de Werra (1981), and de Werra et al. (1990). Due to its complexity,
(Rosa and Wallis, 1982; Dinitz et al., 1994), several metaheuristic and heuristic algorithms have
been proposed for the Sport Timetabling Problem throughout the years. During the years 2000s,
new neighborhoods for local-search-based metaheuristics were developed by Ribeiro and Urrutia
(2004), Anagnostopoulos et al. (2006) and Di Gaspero and Schaerf (2007), as a consequence of rising
interest in the Traveling Tournament Problem (Easton et al., 2001). More recent contributions to
(meta)heuristic methods for Sport Timetabling are found in Lewis and Thompson (2011), Costa
et al. (2012) and Januario and Urrutia (2016). Finally, Van Bulck et al. (2020b) proposed a unified
data format for the round-robin sports timetabling, named RobinX, also employed in the Sport
Timetabling Competition ITC2021 (Van Bulck et al., 2021). For a more complete bibliographic
revision for sport timetabling we redirect the reader to Rasmussen and Trick (2008) and Kendall
et al. (2010).
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3 Problem Description

Many variants of the round-robin tournament problem have been discussed in the literature. We con-
sider here the version proposed for the International Timetabling Competition ITC2021 (Van Bulck
et al., 2021), which takes into account five types of constraints collected from real-world cases: capac-
ity constraints, game constraints, break constraints, fairness constraints and separation constraints.
This formulation has the peculiarity that every single specific constraint can be stated as either hard
or soft, as they may express fundamental properties of the timetable and must be satisfied (hard
version), or they may express preferences and can be violated (soft version). Another characteristic
of the ITC2021 formulation is that it has abandoned the classical mirrored structure in which the
second leg is identical to the first one, with home and away positions swapped. That is, the structure
of ITC2021 instances is either completely free or phased, meaning that a team has to match all other
teams in each leg (but not in the same order).

4 Solution Method

We designed a three-stage multi-neighborhood Simulated Annealing for the solution of the problem.
As search space we consider the set of all two-leg round-robin timetables. The multi-neighborhood
is a hexamodal neighborhood made up by a portfolio of six different local search neighborhoods,
which are specifically tailored for the sport timetabling problem. Five of them, called SwapHomes,
SwapTeams, SwapRounds, PartialSwapTeams, and PartialSwapRounds, are adaptations of classical ones
from Ribeiro and Urrutia (2004), Anagnostopoulos et al. (2006), and Di Gaspero and Schaerf (2007).
The sixth one is a novel neighborhood called PartialSwapTeamsPhased, specifically designed to deal
with phased instances. It is based on the concept of mixed phase, which is a partition of the timetable
in two subsets, named mixed legs, where each couple of teams play together, respectively, for the first
and for the second time. This definition is independent from the current satisfaction of the phase
constraint. The move considers two teams and a set of rounds and swaps the positions of the two
teams in the matches in the given set of rounds. A prerequisite is that the matches involved in the
move must all belong to the same mixed leg. In this way, the move PartialSwapTeamsPhased swaps a
subset of teams inside one of the two mixed legs and it is invariant with respect to the phase.

The metaheuristic employed is basically the classical Simulated Annealing defined by Kirkpatrick
et al. (1983). The search is executed is three distinct sequential stages. Specifically, the first stage
starts its search either from a random or from a greedy solution, the second and the third stages are
warm-started with the output of the previous stage. The differences between the stages consist in the
restrictions applied to the search space and in the exclusion or inclusion of certain constraints.

5 Experimental Results

Our code was developed in C++ and compiled with GNU g++ version 9.3.0 on Ubuntu 20.04.2 LTS.
The tuning phase was partially performed on a cluster of virtual machines provided by the CINECA
consortium. All the other experiments presented in this section were run on a machine equipped with
AMD Ryzen Threadripper PRO 3975WX processor with 32 cores, hyper-threaded to 64 virtual cores,
with base clock frequency of 3.5 GHz, and 64 GB of RAM. In both settings, one single virtual core
is used for each experiment.

Table 1 reports the results obtained by the solver. The column Best solution found reports the
best solution that our solver was able to find in all experiments. Some of these values are those that
we submitted to the ITC2021 competition, others have been found in later experiments. When no
feasible solution has been found, the number of hard violations followed by a letter H is reported.
Next columns, labeled Average values, report the data obtained in a set of experiments that we run
independently from the competition, in order to extract information on the average behavior of the
algorithm in its final configuration. At least 48 runs per instance were performed to collect these
data. Columns Cost and Time report, respectively, the average values of the objective function and
the average time needed for a complete run of the three stages. Regarding the average cost, the value
is computed only on feasible solutions. Column Feasible reports the ratio between feasible solutions
and total runs. Finally, column Best known cost contains the best known results at the moment this
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Instance Best Average values Best
solution known

found Cost Time (s) Feasible cost

Early 1 423 540.7 5667 1.00 362
Early 2 318 384.6 14843 1.00 145
Early 3 1068 1176.5 12194 1.00 992
Early 4 556 1007.8 8759 0.56 507
Early 5 4117 - 28517 0.00 3127
Early 6 3927 4543.0 35161 1.00 3325
Early 7 5205 6721.7 37486 1.00 4763
Early 8 1051 1151.9 21394 1.00 1051
Early 9 132 228.7 10324 1.00 108
Early 10 4986 - 35856 0.00 3400
Early 11 4526 5784.5 43692 1.00 4426
Early 12 1010 1200.2 14726 1.00 380
Early 13 173 233.8 19675 1.00 121
Early 14 63 82.3 5616 1.00 4
Early 15 3556 3945.8 46714 1.00 3362
Middle 1 5657 6075.0 26290 0.06 5177
Middle 2 5H - 26890 0.00 7381
Middle 3 9542 11403.1 44748 0.23 9542
Middle 4 16 33.0 5660 1.00 7
Middle 5 510 624.4 6223 1.00 413
Middle 6 1701 2186.3 21350 1.00 1120
Middle 7 2203 2452.7 16303 1.00 1783
Middle 8 136 196.6 19717 1.00 129
Middle 9 640 772.1 17610 1.00 450
Middle 10 1357 1687.5 14432 1.00 1250
Middle 11 2696 2996.5 43876 1.00 2446
Middle 12 950 1054.2 14599 1.00 911
Middle 13 362 479.3 15687 1.00 252
Middle 14 1172 1304.6 37483 1.00 1172
Middle 15 985 1099.7 8704 1.00 485
Late 1 2021 2372.7 20242 1.00 1922
Late 2 5715 6085.5 41432 0.49 5400
Late 3 2457 2718.0 18327 1.00 2369
Late 4 0 0.0 2354 1.00 0
Late 5 2341 - 9190 0.00 1923
Late 6 930 1121.3 7121 1.00 923
Late 7 1765 2226.5 22959 1.00 1558
Late 8 997 1155.3 11285 1.00 934
Late 9 715 881.2 25963 1.00 563
Late 10 2571 3527.3 32511 0.05 1945
Late 11 207 289.3 15891 1.00 202
Late 12 3944 4830.6 35513 1.00 3428
Late 13 1868 2285.5 21006 1.00 1820
Late 14 1202 1326.3 39160 1.00 1202
Late 15 60 82.8 6434 1.00 20

Table 1: Best and average results

article is written, according to data published on the website of the competition (Van Bulck et al.,
2020a). When the current known best was determined by our solver, the value in the corresponding
column is marked in bold. Overall, our solver could find at least one feasible solution on 44 out of 45
instances. According to data, in its final configuration it manages to determine very easily a feasible
solution on 36 instances, which are characterized by a feasibility ratio of 1.00, as it can be observed
in column Feasible of Table 1. The other instances appear to be harder to solve for the algorithm. In
particular, instances Early 5, Early 10, Middle 2, and Late 5 result to be considerably challenging,
as feasible solutions are found just sporadically.

We also assessed the impact of the new neighborhood PartialSwapTeamsPhased. To do so, we run
an additional set of experiments on phased instances with and without making use of PartialSwap-

TeamsPhased. We highlight that employing the new neighborhood PartialSwapTeamsPhased brings
benefit to the majority of the 22 phased instances: in 17 of these the average cost improvement is
4.24%. One of the remaining five was solved to feasibility only in the configuration that employs
PartialSwapTeamsPhased. The other four are not solved by any of the two configurations in the given
number of runs.
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6 Conclusions

In this study, we considered the version of the Sport Timetabling Problem proposed for the ITC2021
competition. We tackled the problem employing a three-stage multi-neighborhood Simulated An-
nealing approach, which makes use of six different neighborhoods. In particular, the neighborhood
that we named PartialSwapTeamsPhased is a novel contribution. Finally, we performed a parameter
tuning for the solver using the F-RACE procedure that allowed us to find a set of parameters values
for this problem.

This approach managed to find a feasible solution for 44 out of the 45 instances proposed by
the competition. Feasible solutions were found rather easily for most of the instances, however the
metaheuristic struggled to produce feasible solutions for certain instances, even in long execution
times. The results obtained by the Simulated Annealing approach allowed us to rank second out of
13 participants in the final ranking of the competition.

Future work will be devoted to improve the results and performances on both the considered
instances and on other benchmark instances for round-robin tournament. We think that relevant
advancements can be achieved through a wider study and application of the PartialSwapTeamsPhased
neighborhood on a larger set of instances. Possible research directions may also include the definition
and integration of new neighborhoods in the Simulated Annealing algorithm, and the implementation
and evaluation of new greedy techniques to generate different initial solutions, not restricted to the
canonical pattern. Further research may also be committed to develop a matheuristic approach, such
as Large Neighborhood Search (LNS), which embeds exact methods in our Simulated Annealing
algorithm.
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Pseudoboolean Optimisation for RobinX Sports Timetabling

Martin Mariusz Lester

  

Abstract We report on the development of Reprobate, a tool for solving sports
timetabling problems in the RobinX format. The main approach used by the tool is
to encode a timetabling problem using pseudoboolean (PB) constraints and solve
it using existing solvers. Initially, it uses a monolithic encoding that attempts to
satisfy all constraints simultaneously. If this finds a feasible solution, the tool can
improve it using a separate encoding that tunes only the home/away pattern while
fixing the pairings of teams. Furthermore, Reprobate employs a small portfolio of
different solvers and encoding variations and returns the best solution found by
any of them.

We entered Reprobate in the International Timetabling Competition 2021. It
was able to find feasible solutions for the majority of instances, although it strug-
gled to handle large break constraints. For those instances where it could initially
find a solution, the combination of tuning, use of a portfolio of solvers, and varia-
tions in encoding yielded an average reduction in solution cost of 23%.

Keywords pseudoboolean constraints · sports timetabling

1 Introduction

The 2021 edition of the International Timetabling Competition (ITC) was based
around solving sports timetabling problems presented in a restricted version of
the RobinX format [5]. The competition was limited to time-constrained double
round-robin (2RR) tournaments. In such a tournament, each of n teams plays every
other team exactly twice over 2(n − 1) slots: once at home and once away. The
RobinX format allows a wide range of other constraints to be specified, for example
concerning the slots in which particular matches may occur, or limiting the number
of breaks where a team has consecutive home or consecutive away games [4]. Some
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of these constraints are hard, meaning that they must be satisfied. Others are soft,
meaning that they may be violated, but there is a cost for doing so. The goal is
to find a solution that minimises the sum of costs of violated constraints. See the
competition report for a full description [3].

We developed the tool Reprobate for the competition. In Section 2 we outline
the approach used by the tool and some of the optimisations we developed. We
discuss its performance in Section 3, before concluding in Section 4.

Reprobate is implemented as a series of Perl scripts that invoke existing pseu-
doboolean (PB) solvers such as clasp [6] and Sat4J [1]. The tool [8] and solvers
are freely online under an open source licence.

2 Approach

At its core, Reprobate extracts the constraints from a RobinX timetabling problem
and encodes them monolithically as a pseudoboolean (PB) optimisation problem,
specifically a Weighted Boolean Optimisation (WBO) problem. Then, it uses an
existing PB solver to solve the problem. If the solver is successful, Reprobate ex-
tracts the timetable from the solution. To make the system more competitive, we
implemented three optimisations: a portfolio of solvers, a tuning process, and some
variations on the encoding.

2.1 Pseudoboolean Constraints

The pseudoboolean constraint satisfaction (PBS) [10] problem is a generalisation of
the well-known boolean satisfiability (SAT) problem that makes it easy to express
cardinality constraints. In a weighted boolean optimisation (WBO) problem, these
constraints can be given costs, with the goal being to minimise the sum of costs.
SAT-based approaches to sports timetabling have been considered before [11,7],
but are relatively uncommon.

Our encoding uses the following sets of boolean variables:

1. Mt1,t2,s — true just if team t1 plays home against team t2 in slot s;
2. Ht,s — true just if team t plays home in slot s;
3. Bt,s,h — true if team t has a home break (h = 0)/an away break (h = 1) in

slot s, with s > 0.

The timetable is determined by the M variables; the remaining auxiliary variables
make it easier to express certain constraints.

Linear PB constraints are equivalent to 0-1 Integer Linear Programming (0-1
ILP), which is itself a restriction of Mixed Integer Programming (MIP). However,
there is an important practical difference between PB solvers and 0-1 ILP solvers.
PB solvers tend to use techniques from SAT solvers, such as clause-driven conflict
learning (CDCL). In contrast, 0-1 ILP solvers tend to use techniques from linear
programming (LP). According to Berthold and others [2], “feasibility problems
with many constraints that have 0/1 coefficients only” tend to work best with PB
solvers, but “instances with many inequalities with arbitrary coefficients” tend to
work best with MIP solvers. Our encoding uses only +/- 1 coefficients, so all con-
straints are either pure SAT constraints or cardinality constraints. We investigated
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the possibility of using commercial MIP solvers such as Gurobi and CPLEX with
our encoding, but found that they performed very poorly.

2.2 Portfolio of Solvers

It is well-known that different SAT solvers perform well on different SAT instances.
Therefore, if one wishes to solve a particular instance, it is most effective to run
several different solvers in parallel and see which one (if any) finishes first. This
portfolio approach is used by the most competitive SAT solvers, although it is
banned from the main track of the SAT competition, as portfolio solvers tend not
to contribute towards the development of new techniques. The same is true for
PB instances, so in Reprobate, we use 2 solvers (clasp and Sat4J ) with a range of
options.

2.3 Portfolio of Encodings

SAT and PB solvers are often sensitive to the exact encoding of the constraints in
a problem. For this reason, we implemented 6 variations on our initial encoding,
configurable using command-line switches. As the number of variations is small, by
default Reprobate simply tries all of them individually and picks the best solution
found by any of them.

2.4 Tuning Process

Many PB solvers are complete, in the sense that they are guaranteed eventually
to find an optimal solution if one exists. However, in practice, this often takes
infeasibly long, and even if a solver finds a feasible solution, it may not be opti-
mal. In previous work on generating tournament timetables for the 4-player game
mahjong [9], we found that we could often improve a timetable using a separate
encoding that fixes the groupings of players in a particular round. It is possible
that the optimal solution to the original problem is no longer a solution to this
modified encoding, but in practice this is not a problem, as it always produces at
least as good a solution as we could find without it.

Reprobate uses a similar technique. After it has found a feasible solution, it
generates a separate encoding of the timetabling problem in which pairings of
teams in each slot are fixed, but not the choice of which team plays home and
which team plays away. Again, it solves this using a PB solver and extracts a
timetable from the solution. If the tuned timetable is an improvement on the best
timetable produced by the monolithic encoding, Reprobate returns that; otherwise,
it returns the original solution.

3 Results

Using the default encoding and the best solver from our portfolio (clasp with
the crafty preset) with a timeout of 600 s, Reprobate was able to find feasible
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01 02 03 04 05 06 07 08
Early * * 4884 * 5584
Middle 99 2901 3235 8563 1189
Late 3683 7784 0 3678 * 4583

09 10 11 12 13 14 15
Early 4858 * 2070 * 3489 7443
Middle 3530 4263 4950 6199 * 7590
Late 2940 * 8564 3712 5910

Table 1 Baseline performance of Reprobate on ITC 2021 instances. Figures show objective
score with default encoding, clasp (crafty) PB solver, a timeout of 600 s and no tuning phase.
Lower is better. Instances marked with * can be solved using other settings. All results were
generated on a machine running Debian Linux 10 with a 3.4 GHz Intel Core i5-7500 CPU and
64 GB of RAM.

solutions for 25 out of 45 problem instances (56%) in the ITC 2021. Table 1 shows
the corresponding objective scores, which we adopt as our baseline. Applying the
portfolio of solvers and encodings during the ITC 2021, we increased this to 29 out
of 45 (64%). The addition of another encoding variation after the competition [7]
increased this to 33 (73%).

This was not competitive in the ITC 2021, where it did not place in the top
half of the results. However, according to the competition report, “for most prob-
lem instances, a straightforward integer programming formulation could not even
generate a feasible solution”, so it is better than that. Of the instances Reprobate
could not solve during the competition, all except Middle 3 contained a large, hard
BR2 constraint that limited the number of breaks permitted in the timetable.

Focusing now just on the 25 instances in our baseline, Figure 1 shows the rela-
tive improvement made by our optimisations, as well as the best scores submitted
during the competition; Table 2 shows the raw numbers. In combination, the opti-
misations we made yielded an average decrease in objective of 23%, although this
is still some way off the best solutions found for most instances.

4 Conclusion

We have developed Reprobate, the first PB-based tool for solving RobinX sports
timetabling problems. To the best of our knowledge, this is the first general-
purpose sports timetabling tool that uses the OPB file format (for PBS/WBO
problems) and its associated solvers. While Reprobate is effective for many timetabling
problems, it struggles to handle large break constraints. This is a known limitation
of SAT-based approaches, for which he have implemented some existing mitiga-
tions, but more work is needed to investigate how best to handle these.
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Fig. 1 Effect of tuning on objective, for the baseline, the portfolio and different switches. ITC
best solutions included for comparison.

instance baseline baseline-
tuned

portfolio portfolio-
tuned

switches switches-
tuned

itc-best
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